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Theory of ocular dominance pattern formation

O. Scherf, K. Pawelzik, F. Wolf, and T. Geisel
Max-Planck-Institut fu¨r Strömungsforschung, Go¨ttingen, Germany

and SFB 185 ‘‘Nichtlineare Dynamik,’’ Universita¨t Frankfurt am Main, Frankfurt, Germany
~Received 22 July 1998!

We investigate a general and analytically tractable model for the activity-dependent formation of neuronal
connectivity patterns. Previous models are contained as limiting cases. As an important example we analyze
the formation of ocular dominance patterns in the visual cortex. A linear stability analysis reveals that the
model undergoes a Turing-type instability as a function of interaction range and receptive field size. The phase
transitions is of second order. After the linear instability the patterns may reorganize which we analyze in terms
of a potential for the dynamics. Our analysis demonstrates that the experimentally observed dependency of
ocular dominance patterns on interocular correlations of visual experience during development can emerge
according to two generic scenarios: either the system is driven through the phase transition during development
thereby selecting and stabilizing the first unstable mode or a primary pattern reorganizes towards larger
wavelength according their lower energy. Experimentally observing the time course of ocular dominance
pattern formation will decide which scenario is realized in the brain.@S1063-651X~99!12705-3#

PACS number~s!: 87.10.1e, 47.54.1r, 07.05.Mh
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I. INTRODUCTION

Patterns of neuronal connections emerge and change
pending on neuronal activity. It is widely assumed that t
enables the brain to adapt its processing machinery to
structure of environmental stimuli, i.e., sensory experien
and to build precise and useful circuitry from initially crud
and imprecise patterns of connections. The developmen
neuronal connections in the visual cortex is an import
experimental model system for studying the mechanisms
principles involved in the refinement of neuronal circuit
@1–12#. This system has also been a focus of attempts
formalize the basic processes of the activity-dependent
finement of neuronal circuits which promise also a dee
understanding of the properties implied by such mechani
on a network level~for reviews see Refs.@13,14#!. In this
study we investigate one central phenomenon in the de
opment of visual cortical circuits from a pattern formatio
perspective, namely the emergence of the pattern of cor
domains specialized for processing information from the
or the right eye.

Our study refers to experimental observations in the
sual cortices of cats and monkeys. In layer IV of the prima
visual cortex, inputs from the left and right eye are seg
gated into spatially distinct domains called ocular domina
columns ~ODCs! @15,16#. Neurons in individual domains
preferentially respond to stimulation of either the left or t
right eye@17,18#. In the primary visual cortex of cats ODC
form a roughly repetitive pattern@16,19–21#. During devel-
opment the pattern arises between the third and the sev
postnatal week by gradually segregating the initially overl
ping afferents of the two eyes@19,22#. Many lines of evi-
dence indicate that this process is driven by activi
dependent competition for cortical territory between t
geniculocortical afferents subserving the two eyes@6,11,23#.
At the level of individual neurons and synapses this com
tition presumably results from an activity-dependent refi
ment of synaptic connections whereby ‘‘improper’’ conne
PRE 591063-651X/99/59~6!/6977~17!/$15.00
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tions are removed and ‘‘appropriate’’ connections a
elaborated@24,25,10#. Recently it was shown that the spa
ing of ODCs in squinting cats was significantly larger than
normally raised animals@26# ~Fig. 1!. This dependence o
ODC spacing on visual experience has also been sugge
from model simulations@27# and similar observations hav
meanwhile been reported from cats that were raised w
alternating monocular occlusion@28#. Because a globa
change in columnar spacing cannot be easily produced
shifting ocular dominance borders in a preexisting grid th
experimental observations rather indicate that initia
emerging patterns of ODCs form spontaneously and are
determined by yet unobserved prepatterns.

The development of differently spaced ODCs depend
on visual experience is also intriguing from a theoretic
point of view. One very elaborate and biological plausib
framework for studying the emergence of columnar patte
is the class of correlation-based semilinear models develo
by Miller and co-workers@29,30#. Within this model class it
has been shown that the spacing of ODCs is insensitiv
the structure of afferent activity and primarily determined
the extent of connections that link neurons in the corti
layer to their neighbors. At first sight this appears very pla
sible. Following Hebbian rules of synaptic plasticity@31#,
neurons that are simultaneously active will develop sim
afferent connectivity patterns. Connections that link neig
boring neurons will induce a tendency of local groups
neurons to be simultaneously active and therefore to dev
connections to the same eye. Within correlation-based m
els the structure of afferent activity patterns only influenc
whether ODCs develop at all. Another prominent class
models are the so-called self-organizing maps~SOMs! @32–
37,27#. These models, although biologically not very d
tailed, constitute a straightforward idealization of the impo
tant aspects of activity-dependent modifications:~1! Afferent
activity patterns induce activity patterns within the corte
~2! The selectivities of activated neurons are modified a
function of presynaptic and postsynaptic activities. Intere
6977 ©1999 The American Physical Society
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FIG. 1. Upper pictures: autoradiographs from the visual cortex of cats~with friendly permission by Siegrid Lo¨wel!. White lines enclose
area 17. The dark regions indicate neurons that are more strongly activated by the right eye while the brighter regions indicate neur
by the left eye. The left picture shows an ocular dominance pattern of a normal cat and the right picture of a strabismic cat. Th
below shows the typical length scales of the ocular dominance patterns from 19 autoradiographs~same data as in Ref.@26#!.
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ingly simulations of a model within this class suggested t
the spacing of columns in squinting animals should be lar
as compared to normal@27#.

A central mathematical difference between the two m
eling approaches is the treatment of cortical activity patte
The derivation of correlation based models involves desc
ing the activity in the cortical layer as a linear response to
afferent activity patterns@29,30#. In the family of SOM mod-
els activity in the cortical layer is described by a stereotyp
local activity blob@32,33# and is therefore a highly nonlinea
function of the afferent activity patterns. The rational behi
this assumption is that in homogeneous layers of nonlin
model neurons with a lateral coupling of sombrero type,
tivity naturally appears in the form of spatially localized d
mains of activated neurons@32,33,38,39#. Recently, evidence
t
r

-
s.
-
e

d

ar
-

has begun to emerge indicating that this picture may cap
important aspects of cortical responses. Quantitative asp
of the selectivity of visual cortical neurons to the orientati
of visual edge stimuli can be naturally explained when it
assumed that cortical responses are strongly shaped by i
cortical interactions@40–42#. Ben-Yishaiet al. have demon-
strated that under such assumptions cortical responses a
in the form of rather stereotyped and localized activity p
terns @42#. Also during development neurons in the cort
are active in local groups coupled electrically through s
called gap junctions@43#. SOM based models are usef
starting point for studying the consequences of such stron
nonlinear activity responses for the activity-dependent de
opment and plasticity of connectivity patterns. Analyzin
this model class, we will show that the nonlinear nature
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PRE 59 6979THEORY OF OCULAR DOMINANCE PATTERN FORMATION
cortical responses in fact appears as a central prerequis
describe the dependence of ODC spacing on visual exp
ence.

For an understanding of the map formation processe
appears to be useful to generalize some of the mostly u
models rather than to add new models to the family of al
rithms. Some work has been done in this respect@44–48#,
mostly based on the mathematical properties of the mod

In this contribution we start from general phenomenolo
cal principles of map formation and derive the ‘‘convolutio
model,’’ which includes the widely used Kohonen mod
@33# and the elastic net@49# as limiting cases. We then in
vestigate the dynamics of pattern formation of the convo
tion model with particular emphasis on the correlation d
pendency of the characteristic length scale of the oc
dominance pattern. The analysis includes the linear and n
linear stages of pattern formation and the bifurcation beh
ior. We show that there are two generic scenarios reprod
ing the effect which should be experimental
distinguishable. The contribution is organized as follows.
Sec. II we introduce the convolution model. In Sec. III w
apply the convolution model to a derivation of a simp
model of ocular dominance pattern formation. In Sec. IV
show the pattern formation behavior of the model with n
merical simulations and distinguish two essentially differe
scenarios. The next three sections consist of analytical in
tigations of the pattern formation process: in Sec. V the
ear stage, in Sec. VI the early nonlinear stage and in Sec
the strongly nonlinear stage. In Sec. VIII we show how t
convolution model is related to other feature map models
we discuss our approach in Sec. IX.

II. OUTLINE OF THE MODEL

Self-organized neural maps can be seen as mesosc
models based on three biological principles of activi
dependent change of connectivity in the cortex. The fi
principle is the so-called Hebb-rule@31#: it is supposed tha
the connectivity strength between two neurons is enforce
the activity of both neurons are positive correlated. The s
ond principle is the competition between the neurons in
neural sheet for activity. An input stimulus leads to a loc
ized excitation in the neural area next to the neurons that
best optimized to the stimulus@50,51#. As a consequence
neurons in this excited domain specialize to the given stim
lus after the Hebb rule, because input activity~stimulus! and
output activity~excitation in the neural area! are correlated.
The third principle is cooperation. Even a very localiz
stimulus leads to an extended activity patch in the neu
area. Neighboring neurons have correlated activity. As a
sult the adaptation process is a so-called neighborho
preserving map: neighboring neurons are specialized to s
lar stimuli.

In general, we have am-dimensional input spaceV and a
n-dimensional neural areaN. Each neuron at the positionr
PN responds to an input activityvPV according to its con-
nectivity strengthwr which is called synaptic weight vecto
In the context of the model we identify the weight vect
with the so-called receptive field~RF!. The receptive field of
a neuron describes the set of stimuli which induce activity
the neuron. We are interested in the stimulus driven evo
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tion of receptive fields which define the neural map. A lar
number of stimuli and a~convenient! slow adaptation pro-
cess leads to a weight dynamics, which depends on the
average of the distribution of the stimuli. Hence, the weig
dynamics can be given by a differential equation, which d
scribes a deterministic dynamical system. Because of
high density and irregular positions of the neurons in
cortex, we consider a continuous formulation that simplifi
analytical treatment.~The discrete version can be seen as
neighborhood-preserving vector quantizer.!

A formalization of the first adaptation orlearning prin-
ciple should not only include a specialization dynamics
the stimuli but also has to account for the shortage of
sources: the weights cannot be strengthened infinitely.
the other hand, an optimal specialization of the weights t
stimulus should not lead to a further adaptation of t
weights. These demands are fulfilled by a simple equatio

t
]

]t
wr5^~v2wr !er~v!&, ~2.1!

where the parametert is the time constant of the evolutio
~set to 1 in the following! and^•••& denotes the average ove
the input activity distributionP(v), which we assume to ex
ist. The term2^wrer(v)& describes a activity-independen
decay which guarantees weight normalization@34#. The fac-
tor er denotes the excitation in the neuronal array and gu
antees that only the neurons which are excited by the sti
lus can change their weights. The evaluation ofer as a result
of a given input activityv depends not only on the weight
wr but also has to account for the lateral connectivity str
ture in the neural area.

The short range interactions in the cortex are domina
by excitatory connections and the inhibitory interneuro
dominate at a longer range. In combination this leads t
sombrero shaped connectivity. As a result an intracort
feedback dynamics leads to an activity in the neural a
which is localized around those neurons which are relativ
well specialized for the given input@33# On the other hand
the excitationer is influenced by a kind of lateral coopera
tion which is induced by local connections between nea
neurons in the input space~smooth input! @52# or spread of
activation evoked by the lateral excitatory connectivity in t
neural area@41,42#. As we will show later, the strength of th
competition of cortical neurons for activity and the spat
scale of the lateral cooperation are the dominating par
eters of the pattern formation process@53#.

It is convenient to use an explicit ansatz for the stea
state of the excitation@33#. We introduce the above consid
erations into the model by a convolution of a competiti
term with a cooperative lateral neighborhood function.
other words, we model the neuronal activatione as a result
from a global competition for activity and a local spread
activation from neighboring neurons.

First, let us consider the competition term. To measure
degree of optimization of the receptive fieldwr to a given
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stimulusv, we propose a distance measuredR(v,wr), which
considers the implicit influence of the neighboring neuro
~this distance measure is usually not a metric, e.g., the
angle inequality generally does not hold!:

dR
2 ~v,wr !ªE

N
hn„dN~r ,r 8!…~v2wr8!2dr 8. ~2.2!

Herehn is the neighborhood function anddN(r ,r 8) the dis-
tance measure in the neuronal area, which usually is the
clidian distance. It can be seen as a collective optimiza
measure, which considers the RF of the whole group of n
rons that would respond to the stimulus. To obtain the E
clidian distance we choosehn5d(r2r 8).

To enforce the activity response of the neurons wh
distance measures are small we use a monotonic decre
‘‘response-function’’ ofdR

2 (v,wr): the Gaussian

hR„dR~v,wr !…}exp„2dR
2 ~v,wr !/2sR

2
…. ~2.3!

To introduce competition we normalize the response fu
tion by the response of the whole neural area.

gR„dR~v,wr !…ª
hR„dR~v,wr !…

E
N

hR„dR~v,wr !…dr
. ~2.4!

Note that the parametersR controls the competition
strength: settingsR to infinity results in a constant relativ
response functiongR for all neurons which means no com
petition. If sR50, we obtain with probability 1gR5d(r
2r* ), with r* the neuron whose RFwr is next to the stimu-
lus v. Here we have ‘‘hard competition,’’ where the activi
is localized only around the ‘‘winning’’ neuronr* which is
called the ‘‘winner takes all’’~WTA! case. The competition
term gR can be interpreted as relative receptive field effe
sincehR can be seen as an ansatz for a receptive field
width sR . Another interpretation is Bayesian:gR denotes
the probability that the respective neuron is the best o
mized to the given stimulus@47,54#.

In the neural area the activation spreads into the neigh
hood of the neuronr due to local neuronal interactions, d
scribed by a kernelhN„dN(r ,r 8)…, wheredN(r ,r 8) is the dis-
tance measure in the neural area andhN is the neighborhood
function. As an important example consider the Euclid
distance measure

dN
2 ~r ,r 8!5~r2r 8!2 ~2.5!

and a Gaussian neighborhood function

hN„dN~r ,r 8!…}exp„2dN
2 ~r ,r 8!/2sN

2
…. ~2.6!

Combining this, we get an ansatz for the excitation in
neural area

er~v!ªE
N

gR„dR~v,wr8!…hN„dN~r ,r 8!…dr 8. ~2.7!
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With this ansatz our ‘‘convolution model’’@Eqs.~2.1!,~2.7!#
is strongly related to the well-known Kohonen model@33#
and elastic net@49#. We will discuss this topic later in detail
One special property of the convolution model is the ex
tence of two different explicit length scales: the width of t
receptive fieldsR in the input space and the width of th
neighborhood in the neural areasN . We want to stress here
that the basic principles of pattern formation in our mod
are independent of a special choice ofdR , hR , andhN .

To examine the pattern formation behavior of the mode
is very helpful to have a potential or Lyapunov functio
E(w). That is, a function which decreases monotonically
time if wr(t) is a solution of Eq.~2.1!. A sufficient condition
is ] twr52]E/]wr. The advantage of potential systems a
twofold @55#. First, only fixed-point attractors can occu
Second, if there are many fixed points we can compare th
by their value ofE. This gives us a criterion which fixed
point the system may select dynamically. Our model is
general nonpotential. It only has a potential if the distan
measuredR(v,wr) includes the same neighborhood functio
as the cooperation term in the convolution, i.e.,hn5hN ~see
Ref. @56#!.

With hR andhN as Gaussians, we get the potential

E~w!ªK 2sR
2 lnF E

N
expS 2

dR
2 ~v,wr !

2sR
2 D dr G L ~2.8!

with the distance measure after Eq.~2.2!.

III. MODELING OCULAR DOMINANCE PATTERN
FORMATION

To understand the formal principles and mechanis
which underly the development and activity-dependent str
width of the ocular dominance pattern in the primary visu
cortex, we consider two input surfacesL andR, representing
the retinae or lateral geniculate nuclei~LGN! and one neural
sheetN representing the primary visual area in the cort
@27# ~see Fig. 2!. Every neuronrPN gets input activityA
5„AL(x,y),AR(x,y)…, (x,y)PL,R from the left and right
eye, respectively. The neurons react to this input accord
to their distribution of connectivity weights Wr
5„Wr

L(x,y),Wr
R(x,y)…, which determines their receptiv

field. We consider ocular dominance formation as a spe
case of@Eqs.~2.1!,~2.7!#:

]

]t
Wr5^~A2Wr !er~A!&. ~3.1!

If the receptive fields are described by~or we are interested
in! only a few features, it is useful to consider the problem
terms of a feature map. In the case where the features
linear functionals of the stimuli~e.g., gravity centers of the
stimuli distribution! the general form of Eq.~2.4! holds for
the features as well.~For nonlinear features such as the o
entation selectivity the relation to the corresponding full a
tivity distribution is not obvious.! For the ocular dominance
map, we represent the distributed activityA by v
5(vx ,vy ,vz) with vx5*X(A

L1AR)xdxdy, vy5*X(A
L

1AR)ydxdy, andvz5*X(A
L2AR)dxdy while the synaptic
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FIG. 2. Left: high-dimensional model. Distributed stimuliA to the two retinas provide input to neuronr via weight vectorsW.
Right: inputs and weights are represented by their corresponding centers of gravity and the averaged interocular differences as
reduced representation~‘‘feature space’’! where the large extensions denote the location of the stimulus while the height represents oc
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weights W are reduced to the receptive field centersw
5(wx ,wy ,wz) with wx5*X(W

L1WR)xdxdy, wy
5*X(W

L1WR)ydxdy, and wz5*X(W
L2WR)dxdy. In

this representation the average weight dynamics Eq.~2.1!
reads

]

]t
wr5E

M
p~v!~v2wr ! ẽr~v! dv, ~3.2!

wherep is the projection of the high-dimensional stimulu
distribution P into the reduced representation~‘‘feature
space’’! M ~Fig. 2!. The activationẽr in general might de-
pend on more than the centers of gravity and the interoc
differences of the stimuli. Here, however, we use the feat
vectors instead of the activity distribution and RF as a fi
approximation in the framework of the convolution mode

Note that the dimension reduction not necessarily
volves an approximation but instead shifts the attention fr
the high-dimensional problem to the dynamics of centers
gravity and interocular differences, respectively. A struct
which appears in this representation therefore also sh
emerge in the full problem. What then remains is to der
the stimulus distribution in the feature space from the dis
bution of all inputsP.

Intereye correlations are reflected by the variance op
along the ocularity coordinate of the feature space. To
this we consider correlated inputs constructed as in Ref.@27#:
Locally random stimuli are smoothed with a Gaussian ker
of width ss providing surfaces (ÃL,ÃR) which then are mu-
tually correlated with strengthk, i.e., AL5kÃR1(1
2k)ÃL, AR5kÃL1(12k)ÃR ~Fig. 2!. A simple calcula-
tion involving the central limit theorem shows that in th
casep is a normal distribution alongvz with a variance
^vz

2&5(122k)2ss
2p/6. We also derived the stimulus distr

bution in the feature space from other assumptions~such as,
e.g., rare localized stimuli! with the general result that th
variance is alwayŝvz

2&}(122k)2.
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IV. TWO SCENARIOS OF OCULAR DOMINANCE
PATTERN FORMATION

Pattern formation in our model occurs as a result o
dimensional conflict. The two-dimensional neural surface
forced to represent an essentially three-dimensional in
space: the two dimensions are attributed to space and
third to ocularity. The neural map ignores the third dime
sion if the variance of the related feature is small compa
to the effective receptive field size which depends onsN and
sR . Beyond a critical value ofsN andsR the map folds in
and patterns such as stripes and patches emerge.

We investigated the formation of ‘‘ocular dominance pa
terns’’ in our model in many simulations. We started from
binocular@i.e. wz(r )50# and roughly retinotopic map which
is a fixed point of Eq.~3.2! ~see next section!. It turns out
that it is important to distinguish between two different sc
narios of pattern formation~compare with Ref.@57#!.

Figure 3 shows the result of a typical simulation. In t

FIG. 3. Mode selection in a simulation of 32332 neurons~open
boundary conditions,sR50 method from Ref.@33# with learning
rate 0.1!. The inputs are samples from a normal distribution w
variance^vz

2&5(122k)2ss
2p/6 at k50.3. sN was decreased lin-

early from 1.35 to 0.5~neural units! during t553106 iterations.
The grey levels show the evolution of the normalized power spe
of the OD patterns~inset!. WhensN crosses its critical value~dash-
dotted line! the pattern forms and retains its wavelength althou
the maximum of the spectrum of the linearized dynamics mo
further to higher values~thick line!. Note the logarithmic time scale
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6982 PRE 59O. SCHERF, K. PAWELZIK, F. WOLF, AND T. GEISEL
simulations we use a stochastic, Markovian adapta
method as in Ref.@33# to get a robust result. As described
Ref. @37#, the fluctuations are strongest near the largest
genvalue of the linearized dynamics~see next section!. When
the parameterssR , sN , andsn are below the critical value
the noise pattern becomes amplified: it grows exponen
The critical values depend on the correlation parametek
and the wavelength of the amplified pattern depends on
critical values of the width parameters. Further shrinki
during development leads tono changeof the wavelength,
the pattern becomes sharper and more stripe-shaped
The stripe width resulting from this scenario are larger
smaller correlations~see Fig. 5!. We shall discuss this in the
next section.

In the other scenario the width parameters are fixed
subcritical values. Thus the pattern grows right from the
ginning. In the first part of the evolution the wavelength
the pattern is at the largest eigenvalue of the linearized
namics as in the first scenario. But then reorganization
curs due to the nonlinearity of the dynamics. The str
width of the pattern shifts on a logarithmic time scale
longer wavelengths~see Fig. 4!. The stationary length scal
of the pattern depends on both the width parameters and
correlation parameter. Here, the stripe width are larger
smaller correlation too~see Fig. 5!. We shall discuss this in
Sec. VII.

Both scenarios qualitatively predict the same depende

FIG. 4. Evolution of ocular dominance of the same model
above.sN was constant at 1.5~neural units! during t553106 it-
erations andk50.0. The eigenvalue oflmax53.6 boosts the noise
to a great extent. First the modes with the greatest eigenvalue~line!
were amplified. Then the pattern reorganizes and the freque
shifts towards the edge of the positive spectrum~broken line!.
n
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between the correlation and the length scale of the station
map. However, the evolution of the pattern formation p
cess differs in time scale and amplitude. In the next sectio
we investigate the formal principles of the pattern formati
mechanisms in both scenarios. We will focus specifically
the determination of the length scale of the emerging patt

V. PATTERN FORMATION IN FEATURE MAP MODELS

Generally, pattern formation occurs if the homogeneo
binocular map is unstable against small fluctuations. In
following sections we will analyze ocular-dominance patte
formation in the most simple case of a two-dimensional in
space and a one-dimensional chain of neurons. In a first
proximation this can be seen as a vertical cut through
feature space along the ocular dominance direction, par
to one side, say, they direction. The validity of the results in
the case of higher-dimensional feature maps or the fully c
nected problem with two input sheets projecting onto o
neural area will be discussed in the last section.

In the two-dimensional feature space with one space
ordinatex and the ocular dominance coordinatey, we per-
form a linear stability analysis. This allows us to determi
which modes are stable and which become amplified.

The evolution of the weightsw5(wx ,wy) in our reduced
problem is given as

s

cy

FIG. 5. The wave numberk of the pattern normalized by the
wave number of the pattern atk50 as a function of the correlation
parameterk. The diamonds denote the wave number at the fi
scenario where the width parameters shrinks during developm
They are determined by the wave number of the first positive
genvalue~broken line!. The stars describe the wave number of t
stationary solution of the pattern after the reorganization in the s
ond scenario. They are just above the left edge of the posi
spectrum~line!.
]

]t
wr5E

2`

` E
2`

`

P~v!E
2`

` hR„dR~v,wr 8!…

E
2`

`

hR„dR~v,wr 8!…dr8

hN„dN~r ,r 8!…dr8~v2wr !dvxdvy .
he
n-

rs

n

We choose for the calculationshN„dN(r ,r 8)… after Eq.~2.6!
andhR„dR(v,wr)… after Eq.~2.3! with

hn„dN~r ,r 8!…ª
1

A2psn

expS 2
~r 2r 8!2

2sn
2 D .
The casesN5sn represents the potential version and t
casesn50 stands for the continuous formulation of the sta
dard nonpotential Kohonen model@33#.

The homogeneous solution of the map isw̄r5(r ,0). This
is a stationary solution of the map for all paramete
sR , sn , andsN if P(v) is constant in thex direction and
the mean vanishes in they direction because the integratio
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runs over an odd function~for the x direction aroundr and
for the y direction around 0!.

We examine the stability of this stationary solution
linearizing the evolution of a small perturbationdr . With the
ansatzwr5w̄r1dr we get for the evolution in the neighbo
hood of the stationary solution

ḋr'Ldr

with the linear operatorL. In Fourier space this translatio

FIG. 6. The spectra in the stablex direction for several param
eters (sN5sn , s52sN).
h
h

ar

he
m

invariant operator is diagonal. Therefore the computation
the spectrum is straight forward~see Appendix A!. The lin-
earized dynamics is given through a simple eigenvalue eq
tion

]

]t
d̂k5L̂d̂k5l~k!d̂k

with the spectra of eigenvalues

FIG. 7. Some spectra in the unstabley direction for different
parameters sets which fulfill the marginal stability condition (lmax

50).
lx~k!5211S 11k2
sN

2 sn
2

sR
2

2k2
~sR

2 1sN
2 !~sR

2 1sn
2!

sR
2

exp~2k2sR
2 !D expS 2

k2~sN
2 1sn

2!

2 D , ~5.1!

ly~k!5211^vy
2&

@12exp~2k2sR
2 !#

sR
2

expS 2
k2~sN

2 1sn
2!

2 D . ~5.2!
he
If an eigenvaluel(k) is positive, then perturbations wit
wave numberk grow exponentially, while perturbations wit
wave numbersk8 with negative eigenvaluesl(k8) are
damped away. Its easy to see that in thex direction ~Fig. 6!
all modes except the marginally stable translation
damped. This direction is stable.

In they direction the behavior depends on the width of t
input distribution^vy

2&: above a critical value the spectru
includes positive eigenvalues around the maximum~Fig. 7!.
The spectra have a maximum at

kmax5
1

sR
AlnS 11

2sR
2

sN
2 1sn

2D . ~5.3!
e

A mode with this wave number is marginal stable at

^vy
2&5S sN

2 1sn
2

2
1sR

2 DexpFsN
2 1sn

2

2sR
2

lnS 11
2sR

2

sN
2 1sn

2D G .

~5.4!

Combining these two formulas, we get the position of t
first positive eigenvalue
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k* 5
1

A^vy
2&
AlnS 11

2sR
2

sN
2 1sn

2D F11
sN

2 1sn
2

2sR
2 S 11

2sR
2

sN
2 1sn

2D (sN
2

1sn
2)/2sR

2 G . ~5.5!
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Applying this result to the model of ocular dominance p
tern formation of Sec. III, we have to take into considerat
that the parameterssN , sR , andss are not known. Hence
we are only able to compare the resulting wave number
the pattern for the normal and the strabismic case. Assum
that the relation of the width parameters remain unchan
by introducing strabism, we normalize the wave numberk*
by the wave numberk

*
0 of the strabismic case (k50). We

get for thek dependency of the wave number of the result
ocular dominance pattern

k*
k
*
0

5
1

122k
. ~5.6!

A pattern with this wave number is selected in the scena
of shrinking receptive fields~compare Fig. 5!.

VI. PHASE TRANSITIONS AT THE PATTERN
FORMATION

Shrinking the width parameters below the critical valu
lead to patterns with finite amplitude~‘‘ocularity’’ ! via a
phase transition of second order. The stationary amplitud
the model near marginal stability can be derived by expa
ing the evolution equation@Eqs. ~2.1!,~2.7!#. For small am-
plitudes, only the mode of the critical wave numberk* in the
unstable direction and the mode with the strongest coup
from the stable direction have to be considered. Using
symmetry of the equation we have the ansatz for the appr
mation of the solution

wrª@r 1ax sin~2k* r !,ay cos~k* r !#.

The evolution equation is invariant against translations. T
leads to the relative simple form of expansion arou
(ax ,ay)5(0,0)

ȧx'lxax1cxay
2 ,

ȧy'lyay1cyaxay1dyay
3 .

Using the spectrumly as control parameter we have for th
stationary amplitude of the mode

ay5A lx

cxcy2lxdy
Aly.

The model shows a continuous phase transition at all par
eters~see Appendix B and Figs. 8,9!.

Near the WTA case (sR50) a second branch appear
Interestingly this behavior takes place even at positivesR .
This stationary amplitude could refer to higher-order ter
of the expansion. The simulations show that the lo
-

of
ng
d

io

,

of
-

g
e
i-

is
d

-

s
l

minima at the continuous branch is small. Little noise pus
the amplitude to the branch with hysteresis~compare with
the results in Ref.@58#!.

VII. REORGANIZATION PHENOMENA OF PATTERNS

Undercritical width parameters usually lead to a who
range of unstable modes. For each of these modes a pos
amplitude is more optimal than the homogeneous map. T
corresponds in the potential case to a Lyapunov funct
which has a minimum at a positive amplitude at each of t
modes. The wave number of deepest minimum at all t
modes can be seen as the wave number of the statio
solution of the model.

The numerical simulations show that the map reorgani
after a first saturation of the amplitude at the wave num
which corresponds to the largest eigenvalue of the lineari
dynamics. This process is bounded by the positive part of
spectrum of eigenvalues~see Sec. IV!. In the following, we
derive an upper bound for the wave number of the station
solution. We assume that the higher harmonics of the stat
ary map make only a small contribution to the energy a
that the ‘‘refinements’’ to a simple harmonic map have mo
influence at lower wave numbers. This holds in all cases
know ~see, e.g., Figs. 10,11!.

In the case of undercritical width parameters, which a
not too far from the critical values, it is possible to expa
the energy respective the amplitude and the wave num
and then evaluate the zeros of the equation system.
classical technique@55# is not very useful here because th
resulting terms are very long and give only a little insight

FIG. 8. The set of bifurcation points of the convolution mod
(sN5sn). The line denotes the parameters, where the homo
neous solution is marginally stable@ly(k* )50#. Inside the line of
marginal stability, the homogeneous solution is unstable and pa
formations occurs. The arrows denote different paths for the de
opment of patterns~see Fig. 9!.
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Far away from the critical point the expansion breaks down. In this case it is possible to evaluate an estimatio
following way.

In the first step we evaluate the modified distance measure by using the harmonic ansatzwr5„r ,A sin(kr)…:

d2~v,wr !5
1

A2psN
E

2`

`

expS 2
~r 2r 8!2

2sN
2 D ~v2wr 8!

2dr8

5r 222rvx1vx
21vy

222vyA expS 2
k2sN

2

2 D sin~kr !1sN
2 1

A2

2
2

A2

2
exp~22k2sN

2 !cos~2kr !.

FIG. 9. Bifurcation diagrams of the convolution model at different parameterssR ~compare with arrows at Fig. 8!. All paths show a
continuous phase transition behavior. The solid lines show the amplitudeay /A^vy

2& derived from the expansion of the evolution equatio
in Appendix B. Near the hard competition limit (sR50) a new branch with hysteresis appears. This behavior could result from higher
terms of the expansion.
tio
lac
c

For a better approximation we translate the distance func
to achieve nearly a saddle point approximation and rep
the trigonometric function with the approximation up to se
ond order

sin~kr !'kr, cos~kr !'12
k2r 2

2
.

We get as approximation for smallk,sN ,sR , and largeA
~far away from linear instability! for the distance measure

d2~v,wr 1vx
!'Pr21Qr1R

with
n
e

-

Pª11A2k2 exp~22k2sN
2 !,

Qª2vxA
2k2 exp~22k2sN

2 !22vyAk expS 2
k2sN

2

2 D ,

RªsN
2 1

A2

2
@12exp~22k2sN

2 !#1vy
21vx

2A2k2

3exp~22k2sN
2 !22vyvxAk expS 2

k2sN
2

2 D .

With this approximation we have for the energy
E'K 2sR
2 lnF E

2`

`

expS 2
Pr21Qr1R

2sR
2 D drG L

5
1

2 F K R2
Q2

4PL 1sR
2 lnS P

2psR
2 D G

5
1

2 FsN
2 1

A2

2
@12g2~sN ,k!#1sR

2 lnS 11A2k2g2~sN ,k!

2psR
2 D

1
^vy

2&$11A2k2@g2~sN ,k!2g~sN ,k!#%1A2g2~sN ,k!/3

11A2k2g2~sN ,k!
G



m

n
en

y
v
i

av
re

ll
-
go-

e as

sful

he
he

e

f

ni-

Pa-

6986 PRE 59O. SCHERF, K. PAWELZIK, F. WOLF, AND T. GEISEL
with g(sN ,k)ªexp(2sN
2 k2). To determine, at which wave

numberk of the harmonic ansatz the energy has a minimu
we have to look for the zeros of the partial derivatives

]

]A
E~A,k!50,

]

]k
E~A,k!50.

Inserting the zero of the first equation into the second o
leads to a condition for the minima of the approximated
ergy

05@sR
2 exp~22sN

2 k2!#k1@12exp~22sN
2 k2!#

2S 2

3
@exp~24sN

2 k2!2exp~22sN
2 k2!#

1sR
4 k2 exp~24sN

2 k2!1
6

3
^vy

2&

3@exp~2sN
2 k2!2exp~23sN

2 k2!# D 1/2

.

For small parametersN ,sR this equation holds near

k5
1

A3~^vy
2&2sR

2 2sN
2 !

which shows a nearlyk}1/A^vy
2& dependency also far awa

from linear instability. Hence, the dependency of the wa
number normalized with the wave number of the strabism
case is similar to the dependency which holds for the w
number of the first positive eigenvalue in the shrinking
ceptive field case.

FIG. 10. Spectrum of eigenvalues~top! and energy of stationary
solutions~broken line! compared to our harmonic ansatz~solid line!
in the case of a Gaussian distributionP(vy). The optimal wave
number of the stationary solution~a! is bounded by the minimum o
our ansatz~b! and is below the positionk* of maximal eigenvalue
ly(k* ) ~c!.
,

e,
-

e
c
e
-

VIII. RELATION TO OTHER FEATURE MAP MODELS

Our convolution model is strongly related to the we
known Kohonen algorithm@33,37# and to the elastic net al
gorithm @49#. The first one can be seen as a discrete, al
rithmic approach of our model usinghn5d and a vanishing
input field width ~‘‘winner takes all’’ limit!. Correspond-
ingly, the spectra of the linearized dynamics are the sam
in Ref. @37#, if we choose the Euclidian metric (sn50) and
thensR→0:

lx~k!5211~12k2sN
2 ! expS 2

k2sN
2

2 D ,

ly~k!5211^vy
2&k2 expS 2

k2sN
2

2 D
because we have

lim
sR→0

12exp~2k2sR
2 !

sR
2

5k2.

Here, we can see, why Kohonen’s algorithm is so succes
~additional to the simple and algorithmically cheap form!:
because no eigenvalue is smaller than21; numerically the
algorithm is very robust.

If additionally to sR50 we usehn5hN , we get the po-
tential version of the Kohonen’s SOFM. In this case t
model has an energy function which we obtain from t
general energy function Eq.~2.8! with sR→0

EªK 1

2ENhN~r*2r !~v2wr !
2dr L ,

where the neuronr* is the winner neuron in terms of th

FIG. 11. The wave number of the stationary solution~broken
line! and of the upper bound from the position of the energy mi
mum of the harmonic ansatz~upper solid line!. The lower solid line
marks the position of the left bound of the positive spectrum.
rameters aresR5sn50.
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distance measure

dR~v,wr
*
!<dR~v,wr ! ;rPN.

The elastic net algorithm consists of two parts: a Hebb
soft competition term and smoothing elastic force ter
e
,

e
n

-
b

ho
ta
o
s
a

y

l in
c-

bu
x-
n
,

which guarantees the neighborhood preservation. Unfo
nately, the discretization induces an implicit length sc
without obvious interpretation of the second term. The el
tic net behaves similar to the convolution model with a sm
but finite neighborhood widthsN :
]

]t
wr5K ENgR„dR

2 ~v,wr8!…hN„dN
2 ~r ,r 8!…„~v2wr8!1~wr82wr !…dr 8L

5K ENgR„dR
2 ~v,wr8!…hN„dN~r ,r 8!…~v2wr8!dr 8L 1K ENgR„dR

2 ~v,wr8!…hN„dN
2 ~r ,r 8!…~wr82wr !dr 8L .
c-
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ce
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nu-
la-
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tial
dd-
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inly

ost
in a

are

al.
ap-
The first term reduces to the Hebb term of the elastic n
The second term behaves similar to the elastic force term
the neighborhoodsN is small and the width of the receptiv
fields sR is wide in relation to the width of the distributio
of the stimuli

]

]t
wr'^gR„dR

2 ~v,wr !…~v2wr !&1bDwr

with a small factorb. The right side is the continuous for
mulation of the elastic net, since the elastic force term can
seen as a discretization of the Laplace-operator:( r8(wr8
2wr)'Dwr with r 8P neighborhood ofr .

A comparison of the dynamics linearized around the
mogeneous solution makes the relation clearer. We ob
the spectrum of eigenvalues from the spectrum of the c
volution model@Eqs.~5.1!,~5.2!# by inserting the parameter
sn5sN50 and by adding the Fourier transformed line
Laplace-operator

bDdr→2bk2d̂ r .

This yields

lx~k!52k2sR exp~2k2sR
2 !2bk2, ~8.1!

ly~k!5211^y2&
@12exp~2k2sR

2 !#

sR
2

2bk2. ~8.2!

The spectrum in they direction is maximal at

k* 5
1

sR
AlnS ^vy

2&

b
D

which depends on the variance^vy
2& and becomes marginall

stable at

^vy
2&5sR

2 1bF11 lnS ^vy
2&

b D G .
Comparing this to the spectrum of the convolution mode
the unstabley direction we get an approximation of the spe
trum of the elastic net around the maximum with a small
finite width sN of the neighborhood function. From the e
t.
if

e

-
in
n-

r

t

pansion aroundsN50 we can estimate the elastic force fa
tor b with an small but finite neighborhood in the neur
area:

b5
sN

2

2sR
2 ^vy

2&.

For higher frequencies, however, the spectrum of the ela
net differs from that of the convolution model. The Lapla
operator damps the modes in this range much more than
neighborhood function. This damping behavior leads to
merical instabilities, which have to be considered in simu
tions. The energy function of the potential elastic net mo
can be obtained from the energy function of the poten
convolution model by using the parameters above and a
ing an elastic energy term

b

2EN~¹wr !
2dr .

The expansion of this term around the homogeneous ma
in the previous section results in:

b

2E2`

`

~¹wr !
2dr5

b

2 S 11
A2k2

2 D .

An analysis of this energy function along the lines of t
previous sections shows, that the elastic net has a phase
sition of second order for allsR and we can expect a simila
reorganization behavior as for the convolution model@59#.

IX. DISCUSSION

In recent years a wide range of models with differe
mathematical properties and different degree of abstrac
has been used to describe the development of ocular d
nance patterns. On one side there are noncompetitive, ma
linear models@60–62# with local learning rules which are
based only on the correlation between input cells and p
synaptic cells. In these models the changes are governed
linear way by the input patterns. On the other side there
the competitive, essentially nonlinear models@49,27,37# in
which the learning rules are nonlinear and slightly nonloc
In some comparisons between linear and nonlinear
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proaches it had been stressed that the competitive mo
seem to fit better to the physiological findings@57,63,14#.
Hence, we restrict our investigation of principles of patte
formation to the latter class of models.

In this contribution we analyzed activity-dependent fo
mation of neural connectivity patterns in the framework
the convolution model. The convolution model is deriv
from basic assumptions about activity-dependent neural
formation making it neurobiologically plausible. At the sam
time it generalizes a range of previous approaches. In
ticular, the widely used Kohonen model@33,37,64# is con-
tained as a limiting case and the elastic net algorit
@49,45,65# can be approximated for the case of a weak ela
force. We applied our approach to the problem of ocu
dominance pattern formation in visual cortex for which w
performed simulations and a mathematical analysis of
basic mechanisms of pattern formation including the bif
cation behavior and reorganization phenomena. In partic
we were interested in the origin of characteristic leng
scales of the resulting patterns and on how these scales
pend on interocular correlations of the inputs to the two e
during development.

We found that the experimental observation of increas
scales for lower correlation@26# is reproduced in the convo
lution model@37,66,27# following essentially one of two dy-
namic scenarios of pattern formation.

~1! In the first scenario the homogeneous solution is sta
in the beginning, i.e., all neurons are binocular. In order
obtain patterns the intrinsic width parameters~effective re-
ceptive field size! must shrink during the formation proces
such that the map is driven through the instability. In th
case the mode with the wave number of the eigenvalue
becoming positive grows exponential. The pattern satur
at an amplitude which can be determined by the higher o
coefficients of the expansion of the energy function as sho
in Sec. VI. Further shrinking the receptive fields leads to
deeper energy minimum and the pattern may become fix

~2! In the second scenario the parameters lead to pa
formation right from the beginning. In this case a patte
corresponding to the largest positive eigenvalues grows
until it reaches saturation. The pattern does not rem
stable, it reorganizes on a long time scale which goes al
with a lowering of the wave number of the pattern. The sh
to lower wave numbers stops before it reaches the
boundary of the positive spectrum of eigenvalues.

Both scenarios correctly describe the effect of wider str
width of ocular dominance patterns in strabismic cats~Fig.
5!. The absolute wave length of the pattern is, however,
determined, because it depends on experimentally unkn
physiologically values of length scalessR , sN , and sn .
Based on the assumption, that at induced strabism the w
parameters remain unchanged and correlation is zero, we
tain a relative wavelength as a function of the correlat
parameter for the normal case. Figure 5 shows that the
narios of OD pattern formation cannot be distinguished
the basis of the stationary solutions alone. If, however,
dynamicsof the pattern formation is observed, both scenar
make very different predictions~compare Figs. 3 and 4!. In
case of shrinking receptive field sizes and/or shrink
neighborhood widths, at some point the pattern grows v
fast with the first unstable wavelength which from then
els
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does not change any further. In the other case of cons
subcritical parameters, the pattern grows with a high spa
frequency right from the beginning and then reorganizes o
long time scale. This yields a map with a wider stripe wid

Which scenario is actually realized in the brain can
resolved by the experiment sketched below that is feas
with present day technology. Starting at about two to th
weeks of age, ocular dominance columns can be visual
in the visual cortex of kittens by optical imaging of intrins
signals @67,68#. It is known from monocular deprivation
studies that the OD pattern is in a plastic state until the
of the third month of life, with the degree of plasticity bee
ing maximal at an age of six weeks. Practically it appe
possible to visualize the pattern every two or three days
should therefore be possible to obtain a sequence of patt
following its development from the third week to adulthoo
Comparing such sequences in squinting animals and anim
with normal visual experience should suffice to identify
which scenario a larger wavelength of ocular dominance c
umns is realized in the brain of squinting animals.

In our formal analysis we considered the evolution of fe
ture maps in terms of a deterministic dynamical system.
neglected the influence of noise in the formulation of t
model in order to guide the attention to the basic structure
the dynamics. However, knowing the properties of the de
ministic system means knowing a lot about the related s
chastic system. The linear approximation of the evolut
equation corresponds to the drift term of the Fokker-Plan
equation which determines the stability behavior. On
other hand, the energy function of the deterministic syst
determines the stationary invariant distribution of the ma
P(w):P(w)}exp@22E(w)/s2#, wheres is the strength of
the additive noise.

The type of transition from the homogeneously binocu
state to the ocular dominance pattern exhibits distinct sig
tures of the nonlinear contributions to the developmental
namics. Our results demonstrate that the type of bifurca
~supercritical vs subcritical! depends on the qualitative na
ture of intracortical interactions. Assuming that the develo
ment of ocular dominance columns is not coupled to
retinotopic organization, the transition is supercritical~dis-
continuous! if the range sN over which activity spreads
within the cortical layer is much larger than the recepti
field sizesR ~see coefficientdy in Appendix B!. The bifur-
cation is continuous if the size of receptive fields is a co
siderable fraction of the intracortical rangesN . If the devel-
opment of the columnar pattern is coupled to retinoto
distortions the transition becomes continuous for the co
plete range of parameters for which patterns can form. T
latter result agrees with the findings of Herman and Der@58#
who studied the phase transition, which occurs in the disc
version of the Kohonen model. Such detailed properties
the patterns forming transition might become experimenta
accessible in the future. Our results suggest that in this c
overall properties of the pattern forming transition could
used for testing the qualitative nature of neuronal inter
tions in the cortical area.

The formal analysis were made in the most simple cas
a one-dimensional neural area and a two-dimensional in
space. The extension to the higher-dimensional case is s
lar to the ‘‘classical’’ pattern formation systems in physi
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such as the Swift-Hohenberg equations@55#. At the linear
stage of the evolution of the map, the different dimensio
are independent from each other. Hence, the phase trans
occurs for each dimension individually. At the nonline
stage of pattern formation the dimensions are no longer
dependent. Similar to systems described by amplitude e
tions of Ginzurg-Landau-type the map reorganizes
smoother patterns such as parallel stripes@69#. This reorga-
nization process has only a little influence on the wave nu
ber of the resulting pattern.

Generally, it is very difficult to find a stationary solutio
for high-dimensional fully connected maps. This prohibits
similar analysis of the stability behavior as in the low
dimensional feature map models. Another way of investig
ing the pattern formation in a high-dimensional map w
proposed by Baueret al. @70#. They analyzed a heuristic cos
function depending on an ansatz for the stationary map. T
demonstrated the validity of their computations by comp
ing to numerical simulations. However, the starting point
their derivation of the distortion measure which was adop
from Ref. @71# is not valid even in the case of an order
map in the low-dimensional feature map case~see Appendix
C!. A more general investigation will have to use a co
function, for which the validity was formally proofed.

After all, perhaps the most striking feature of the se
organized neural feature map model is the analogy with
classical pattern generating systems of physics which are
scribed by equations of the Ginzburg-Landau type. We s
pect, that more detailed investigations of instabilities in
nonlinear regime would reveal behaviors such as zig-zag
stabilities, competition between different modes and es
cially will stress the relevance of the boundaries of the neu
area for the hole layout of the pattern@59#.

APPENDIX A: COMPUTATION OF THE SPECTRA
OF THE CONVOLUTION MODEL

The evolution of the weights is in our reduced proble
given as
s
ion
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]

]t
wr5E

2`

` E
2`

`

P~v!E
2`

`

3
hR„dR~v,wr 8!…

E
2`

`

hR„dR~v,wr 8!…dr8

hN„dN~r ,r 8!…dr8

3~v2wr !dvxdvy .

We choose for the calculations

hR„dR~v,wr !…5
1

2psR
2

expS 2
dR~v,wr !

2sR
2 D

with

dR~v,wr !ª
1

A2psn
E

2`

`

expS 2
~r 2r 8!2

2sn
2 D ~v2wr 8!

2dr8

and

hN„dN~r ,r 8!…5
1

A2psN
expS 2

dN~r ,r 8!

2sN
2 D ,

with dN~r ,r 8!ª~r 2r 8!2.

We take the ansatz

wr5w0r1dr5@r 1dx~r !,dy~r !#.

We get

]

]t
wr5

]

]t
dr5E

2`

` E
2`

`

P~v! f 1~w0r1dr ! f 2~w0r1dr !

3 f 3~w0r1dr !,

where we expand the four functions around the station
solutionw0r up to terms of first order:
f 1~w0r1dr !ªE
2`

`

hR„dR~v,w0r 81dr !…hN„dN~r ,r 8!…dr8

'E
2`

`

hR„dR~v,w0r 8!…hN„dN~r ,r 8!…dr8

1E
2`

` E
2`

` exp@2~r 82r 9!/2sn
2#

A2psnsR
2 ~v2w0r 9!dr 9dr9hR„dR~v,w0r 8!…hN„dN~r ,r 8!…dr8,

f 2~w0r1dr !ªS E
2`

`

hR„dR~v,w0r 81dr !…dr8D 21

'
1

A2psR
expS vy

21sn
2

2sR
2 D S 11E

2`

` E
2`

` exp@2~r 82r 9!/2sn
2#

2psnsR
2 ~v2w0r 9!dr 9dr9hR„dR~v,w0r 8!…dr8D ,

f 3~w0r1dr !ªS vx2r 2dx~r !

vy2dy~r ! D .
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Neglecting terms with higher order than one and using the fact of vanishing mean in they direction, we get

]

]t
d~r !52d~r !1

1

2psNsR
3 S c~r !2

sN

AsN
2 1sR

2
w~r !D

with

cx~r !5E
2`

` E
2`

` E
2`

`

~vx2r !
exp@2~r 82r 9!2/2sn

2#

A2psn

~vx2r 9!dx~r 9!expS 2
~vx2r 8!2

2sR
2 D expS 2

~r 2r 8!2

2sN
2 D dr9dr8dvx ,

wx~r !5E
2`

` E
2`

` E
2`

`

~vx2r !expS 2
~vx2r !2

2~sR
2 1sN

2 !
D exp@2~r 82r 9!2/2sn

2#

A2psn

~vx2r 9!dx~r 9!expS 2
~vx2r 8!2

2sR
2 D dr9dr8dvx

and in they direction

cy~r !5^vy
2&E

2`

` E
2`

` E
2`

` exp@2~r 82r 9!2/2sn
2#

A2psn

dy~r 9!expS 2
~vx2r 8!2

2sR
2 D expS 2

~r 2r 8!2

2sN
2 D dr9dr8dvx ,

wy~r !5^vy
2&E

2`

` E
2`

` E
2`

`

expS 2
~vx2r !2

2~sR
2 1sN

2 !
D exp@2~r 82r 9!2/2sn

2#

A2psn

dy~r 9!expS 2
~vx2r 8!2

2sR
2 D dr9dr8dvx .

If we consider the dynamics related to the wave numbersk of the perturbation, the convolutions inc(r ) andw(r ) translates
to simple products. We get

]

]t
d̂~k!52d̂~k!1

1

2psNsR
3 S ĉ~k!2

sN

AsN
2 1sR

2
ŵ~k!D

with

ĉx~k!5 d̂x~k!2psR
3 sNS 11k2

sN
2 sn

2

sR
2 D expS 2

k2~sN
2 1sn

2!

2 D ,

ŵx~k!5 d̂x~k!2psRAsR
2 1sN

2 ~sR
2 1sN

2 !~sR
2 1sn

2!k2 expS 2
k2~sN

2 1sn
212sR

2 !

2 D ,

and

ĉy~k!5 d̂y~k!^vy
2&2psRsN expS 2

k2~sN
2 1sn

2!

2 D ,

ŵy~k!5 d̂y~k!^vy
2&2psRAsR

2 1sN
2 expS 2

k2~sN
2 1sn

212sR
2 !

2 D .

The linearized evolution in the fourier space of a small perturbation is given by an eigenvalue equation

]

]t
d̂~k!5l~k!d̂~k!

with the spectra of eigenvalues

lx~k!5211S 11k2
sN

2 sn
2

sR
2

2k2
~sR

2 1sN
2 !~sR

2 1sn
2!

sR
2

exp~2k2sR
2 !D expS 2

k2~sN
2 1sn

2!

2 D ,

ly~k!5211^vy
2&

@12exp~2k2sR
2 !#

sR
2

expS 2
k2~sN

2 1sn
2!

2 D .
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APPENDIX B: THE EXPANSION OF THE EVOLUTION EQUATION

We expand the evolution equation@Eq. ~3.2!#, with the ansatz

wrª„r 1ax sin~2kr !,ay cos~kr !…

around (ax ,ay)5(0,0). Using the symmetry of the equation and neglecting the influence of higher modes, we have

ȧx'lxax1cxay
2 , ~B1!

ȧy'lyay1cyaxay1dyay
3 . ~B2!

With similar computations as in Appendix A we have for the coefficients

cx5kF S ~sN
2 1sR

2 !
12exp~24k2sR

2 !

sR
2

21D exp@22k2~sn
21sN

2 !#2^y2&

3S ~sN
2 1sR

2 !
@12exp~22k2sR

2 !#@12exp~2k2sR
2 !#2

sR
4

2
12exp~2k2sR

2 !

sR
2 D exp@2k2~sn

212sN
2 !#G , ~B3!

cy52kF S ~sn
21sR

2 !
12exp~24k2sR

2 !

sR
2

21D exp@22k2~sn
21sN

2 !#2^y2&

3S ~sn
21sR

2 !
@12exp~22k2sR

2 !#@12exp~2k2sR
2 !#2

sR
4

2
12exp~k2sR

2 !

sR
2 D expS 2

k2

2
~3sn

21sN
2 ! D G , ~B4!

dy5
1

8 H 12exp~24k2sR
2 !

sR
2

exp@22k2~sn
21sN

2 !#2^y2&
@12exp~22k2sR

2 !#@12exp~2k2sR
2 !#2

sR
4

3Fexp@2k2~sn
212sN

2 !#1expS 2
k2

2
~5sn

21sN
2 ! D G2^y4&

@12exp~2k2sR
2 !#4

sR
6

expS 2
k2

2
~3sn

21sN
2 ! D J . ~B5!
-
e
to
is

r-
hy
a
i

ion
a-

ior
Inserting the stationary solution of Eq.~B1! in the stationary
solution of Eq.~B2!, we have

ay
25

lxly

cxcy2lxdy
. ~B6!

The amplitude equation Eq.~B6! shows the bifurcation be
havior of the model. Normally the spectrum of eigenvalu
ly is used as control parameter for the bifurcation. The fac
cxcy2lxdy indicates the type of the of the bifurcation. Is th
factor negative, then there is a foreward bifurcation~a con-
tinuous phase transition!. In the other case a backward bifu
cation with an discontinuous phase transition and some
teresis occurs. The model shows a continuous ph
transition at all parameters. In the winner takes all lim
(sR50) we have

cx5k$~4sN
2 k221!exp@22k2~sn

21sN
2 !#1^y2&k2

3exp@2k2~sn
212sN

2 !#%, ~B7!

cy52kF ~4sn
2k221!exp@22k2~sn

21sN
2 !#1^y2&k2

3expS 2
k2

2
~3sn

21sN
2 ! D G , ~B8!
s
r

s-
se
t

FIG. 12. Comparison of the spectra of the linearized evolut
equations~broken lines! with the spectra of the corresponding qu
dratic part of the Lyapunov function~lines! related to a perturbation
only in the y direction near marginal stability. In all cases issn

50. The Lyapunov function predicts a different stability behav
than the dynamical systems actually have.
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dy5
k2

2
exp@22k2~sn

21sN
2 !#. ~B9!

In the SOFM limitsn50 we get the same results as in Re
@58#.

APPENDIX C: COUNTER EXAMPLE TO THE SUPPOSED
LYAPUNOV FUNCTION OF THE KOHONEN MODEL

We investigate the validity of an ansatz for a Lyapun
function of the convolution model in the case of nonpoten
ality hN5” hn :

Vª
1

2EMp~v!E
N

~v2wr !
2er~v!drdv.

A simple method to test thatV is a Lyapunov function, is to
compare the local stability conditions of the dynamical s
tem and the Lyapunov function

L,0⇔
!

Q.0

with
g

,

ev
.

-

-

]

]t
~w01d!'L~w0!d,

V~w01d!'V~w0!1
1

2
dQ~w0!d.

The operatorL describes the linearized evolution of the d
namical system andQ is the quadratic term of expansion o
the lyapunov functionV. The implications made above hav
to hold for any perturbation. Hence, we can restrict us to
case of a perturbation only in they direction. Then the prob-
lem reduces to a simple comparison between the spectrumly
of the operatorL in the y direction@Eq. ~5.2!# and the nega-
tive spectrum of eigenvalues ofQyy5]dy

2 V(w0). We con-
sider the stability behavior around the stationary solut
w05(r ,0), which is a ordered, smooth map. This allows f
an examination of the results in Ref.@71#.

In Fourier space the operatorQyy is diagonal, as a resul
of the translation invariance. We have

Q̂yy~k!5
1

2 F12^vy
2&

12~21sR
2 k2!exp~2k2sR

2 !

sR
2

3expS 2
~sN

2 1sn
2!k2

2 D G .

Figure 12 shows, thatV is in generalnot a lyapunov function
of the neural map model of Eqs.~2.1!,~2.7!. The spectrum of
the linearized system predicts another stability behavior t
the quadratic term of the lyapunov function.
l.
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