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Theory of ocular dominance pattern formation
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We investigate a general and analytically tractable model for the activity-dependent formation of neuronal
connectivity patterns. Previous models are contained as limiting cases. As an important example we analyze
the formation of ocular dominance patterns in the visual cortex. A linear stability analysis reveals that the
model undergoes a Turing-type instability as a function of interaction range and receptive field size. The phase
transitions is of second order. After the linear instability the patterns may reorganize which we analyze in terms
of a potential for the dynamics. Our analysis demonstrates that the experimentally observed dependency of
ocular dominance patterns on interocular correlations of visual experience during development can emerge
according to two generic scenarios: either the system is driven through the phase transition during development
thereby selecting and stabilizing the first unstable mode or a primary pattern reorganizes towards larger
wavelength according their lower energy. Experimentally observing the time course of ocular dominance
pattern formation will decide which scenario is realized in the brfg#1063-651X99)12705-3

PACS numbes): 87.10+e€, 47.54+r, 07.05.Mh

[. INTRODUCTION tions are removed and ‘“appropriate” connections are
elaborated 24,25,1Q. Recently it was shown that the spac-
Patterns of neuronal connections emerge and change diexg of ODCs in squinting cats was significantly larger than in
pending on neuronal activity. It is widely assumed that thisnormally raised animal§26] (Fig. 1). This dependence of
enables the brain to adapt its processing machinery to th@DC spacing on visual experience has also been suggested
structure of environmental stimuli, i.e., sensory experiencefrom model simulation§27] and similar observations have
and to build precise and useful circuitry from initially crude meanwhile been reported from cats that were raised with
and imprecise patterns of connections. The development aflternating monocular occlusiofi28]. Because a global
neuronal connections in the visual cortex is an importanthange in columnar spacing cannot be easily produced by
experimental model system for studying the mechanisms anshifting ocular dominance borders in a preexisting grid these
principles involved in the refinement of neuronal circuitry experimental observations rather indicate that initially
[1-12]. This system has also been a focus of attempts t@merging patterns of ODCs form spontaneously and are not
formalize the basic processes of the activity-dependent redetermined by yet unobserved prepatterns.
finement of neuronal circuits which promise also a deeper The development of differently spaced ODCs depending
understanding of the properties implied by such mechanismsn visual experience is also intriguing from a theoretical
on a network levelfor reviews see Refd.13,14)). In this  point of view. One very elaborate and biological plausible
study we investigate one central phenomenon in the deveframework for studying the emergence of columnar patterns
opment of visual cortical circuits from a pattern formation is the class of correlation-based semilinear models developed
perspective, namely the emergence of the pattern of corticdly Miller and co-worker§29,30. Within this model class it
domains specialized for processing information from the lefthas been shown that the spacing of ODCs is insensitive to
or the right eye. the structure of afferent activity and primarily determined by
Our study refers to experimental observations in the vithe extent of connections that link neurons in the cortical
sual cortices of cats and monkeys. In layer IV of the primarylayer to their neighbors. At first sight this appears very plau-
visual cortex, inputs from the left and right eye are segresible. Following Hebbian rules of synaptic plasticitg1],
gated into spatially distinct domains called ocular dominanceneurons that are simultaneously active will develop similar
columns (ODCs [15,16. Neurons in individual domains afferent connectivity patterns. Connections that link neigh-
preferentially respond to stimulation of either the left or theboring neurons will induce a tendency of local groups of
right eye[17,18. In the primary visual cortex of cats ODCs neurons to be simultaneously active and therefore to develop
form a roughly repetitive patterfi6,19—21. During devel-  connections to the same eye. Within correlation-based mod-
opment the pattern arises between the third and the sevends the structure of afferent activity patterns only influences
postnatal week by gradually segregating the initially overlapwhether ODCs develop at all. Another prominent class of
ping afferents of the two eydd49,22. Many lines of evi- models are the so-called self-organizing mgp®Ms [32—
dence indicate that this process is driven by activity-37,27.. These models, although biologically not very de-
dependent competition for cortical territory between thetailed, constitute a straightforward idealization of the impor-
geniculocortical afferents subserving the two ej@41,23.  tant aspects of activity-dependent modificatioiis:Afferent
At the level of individual neurons and synapses this compeactivity patterns induce activity patterns within the cortex.
tition presumably results from an activity-dependent refine{2) The selectivities of activated neurons are modified as a
ment of synaptic connections whereby “improper” connec-function of presynaptic and postsynaptic activities. Interest-
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FIG. 1. Upper pictures: autoradiographs from the visual cortex of(eéth friendly permission by Siegrid lwel). White lines enclose
area 17. The dark regions indicate neurons that are more strongly activated by the right eye while the brighter regions indicate neurons driven
by the left eye. The left picture shows an ocular dominance pattern of a normal cat and the right picture of a strabismic cat. The display
below shows the typical length scales of the ocular dominance patterns from 19 autoradiggaaphsiata as in Ref26]).

ingly simulations of a model within this class suggested thahas begun to emerge indicating that this picture may capture
the spacing of columns in squinting animals should be largeimportant aspects of cortical responses. Quantitative aspects
as compared to norm§27]. of the selectivity of visual cortical neurons to the orientation

A central mathematical difference between the two mod-of visual edge stimuli can be naturally explained when it is
eling approaches is the treatment of cortical activity patternsassumed that cortical responses are strongly shaped by intra-
The derivation of correlation based models involves describeortical interactiong40—42. Ben-Yishaiet al. have demon-
ing the activity in the cortical layer as a linear response to thestrated that under such assumptions cortical responses appear
afferent activity patterng29,30. In the family of SOM mod- in the form of rather stereotyped and localized activity pat-
els activity in the cortical layer is described by a stereotypederns[42]. Also during development neurons in the cortex
local activity blob[32,33 and is therefore a highly nonlinear are active in local groups coupled electrically through so-
function of the afferent activity patterns. The rational behindcalled gap junctiond43]. SOM based models are useful
this assumption is that in homogeneous layers of nonlineastarting point for studying the consequences of such strongly
model neurons with a lateral coupling of sombrero type, acnonlinear activity responses for the activity-dependent devel-
tivity naturally appears in the form of spatially localized do- opment and plasticity of connectivity patterns. Analyzing
mains of activated neurof82,33,38,3% Recently, evidence this model class, we will show that the nonlinear nature of
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cortical responses in fact appears as a central prerequisite tion of receptive fields which define the neural map. A large
describe the dependence of ODC spacing on visual experitumber of stimuli and dconvenient slow adaptation pro-
ence. cess leads to a weight dynamics, which depends on the time
For an understanding of the map formation processes #verage of the distribution of the stimuli. Hence, the weight
appears to be useful to generalize some of the mostly usegynamics can be given by a differential equation, which de-
models rather than to add new models to the family of algoscribes a deterministic dynamical system. Because of the
rithms. Some work has been done in this respdét-48,  high density and irregular positions of the neurons in the
mostly based on the mathematical properties of the models,ortex, we consider a continuous formulation that simplifies

In this contribution we start from general phenomenologi-, 4 \ytical treatment(The discrete version can be seen as a
cal principles of map formation and derive the “convolution neighborhood-preserving vector quantizer

model,” which includes the widely used Kohonen model x5 majization of the first adaptation dearning prin-

[33] and the elastic ne9] as limiting cases. We then in- ciple should not only include a specialization dynamics on

vestigate the dynamics of pattern formation of the convolu—,[he stimuli but also has to account for the shortage of re-

tion model with particular emphasis on the correlation de- - th iaht t be st thened infinitelv. O
pendency of the characteristic length scale of the oculgpourees: the weights cannot be strengthened infinitely. On

dominance pattern. The analysis includes the linear and noﬁh,e other hand, an optimal specialization of the Welghts toa
linear stages of pattern formation and the bifurcation behayStimulus should not lead to a further adaptation of the
ior. We show that there are two generic scenarios reproduc¥eights. These demands are fulfilled by a simple equation

ing the effect which should be experimentally
distinguishable. The contribution is organized as follows. In
Sec. Il we introduce the convolution model. In Sec. Il we
apply the convolution model to a derivation of a simple
model of ocular dominance pattern formation. In Sec. IV we
show the pattern formation behavior of the model with nu-
merical simulations and distinguish two essentially different
scenarios. The next three sections consist of analytical invegyhere the parameter is the time constant of the evolution

tigations of the pattern formation process: in Sec. V the lin\set to 1 in the followinggand( - - - ) denotes the average over
ear stage, in Sec: VI the early nonlinear stage and in Sec. Vi, input activity distributiorP(v), which we assume to ex-
the strongly nonlinear stage. In Sec. VIl we show how the;

. ) ist. The term—(w,e,(v)) describes a activity-independent
convolution model is related to other feature map models angsecay which guarantees weight normalizatied]. The fac-
we discuss our approach in Sec. IX.

tor e, denotes the excitation in the neuronal array and guar-
antees that only the neurons which are excited by the stimu-
Il. OUTLINE OF THE MODEL lus can change their weights. The evaluatiore,os a result

of a given input activityv depends not only on the weights

Self-organized neural maps can be seen as MESOSCORIE 1yt ais0 has to account for the lateral connectivity struc-
models based on three biological principles of activity-y e in the neural area

dependent change of connectivity in the cortex. The first

principle is the so-called Hebb-ru[@1]: it is supposed that excitatory connections and the inhibitory interneurons
the connectivity strength between two neurons is enforced iPy . y ynhibrtory I
dominate at a longer range. In combination this leads to a

the activity of both neurons are positive correlated. The sec- . . !
ond principle is the competition between the neurons in théombrero shaped connectivity. As a result an intracortical

neural sheet for activity. An input stimulus leads to a local-f€€dback dynamics leads to an activity in the neural area
ized excitation in the neural area next to the neurons that a@hich is localized around those neurons which are relatively
best optimized to the stimulug50,51. As a consequence well specialized for the given inpyB83] On the other hand
neurons in this excited domain specialize to the given stimuthe excitatione; is influenced by a kind of lateral coopera-
lus after the Hebb rule, because input acti\(ﬁy'mmus and tion which is induced by local connections between nearby
output activity (excitation in the neural arpare correlated. neurons in the input spademooth input [52] or spread of
The third principle is cooperation. Even a very localizedactivation evoked by the lateral excitatory connectivity in the
stimulus leads to an extended activity patch in the neuraheural are§41,42. As we will show later, the strength of the
area. Neighboring neurons have correlated activity. As a reeompetition of cortical neurons for activity and the spatial
sult the adaptation process is a so-called neighborhoodscale of the lateral cooperation are the dominating param-
preserving map: neighboring neurons are specialized to simeters of the pattern formation procd&s].
lar stimuli. It is convenient to use an explicit ansatz for the steady
In general, we have mr-dimensional input spac®@ and a  state of the excitatiop33]. We introduce the above consid-
n-dimensional neural are&’. Each neuron at the positian  erations into the model by a convolution of a competition
e N'responds to an input activitye Q) according to its con- term with a cooperative lateral neighborhood function. In
nectivity strengthw, which is called synaptic weight vector. other words, we model the neuronal activateas a result
In the context of the model we identify the weight vector from a global competition for activity and a local spread of
with the so-called receptive fiel@RF). The receptive field of activation from neighboring neurons.
a neuron describes the set of stimuli which induce activity in  First, let us consider the competition term. To measure the
the neuron. We are interested in the stimulus driven evoludegree of optimization of the receptive fielg to a given

17
TEWrZ«V—Wr)er(V)), (2.9

The short range interactions in the cortex are dominated
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stimulusv, we propose a distance measusg(v,w,), which ~ With this ansatz our “convolution modellEgs.(2.1),(2.7)]
considers the implicit influence of the neighboring neurongs strongly related to the well-known Kohonen mod@s]
(this distance measure is usually not a metric, e.g., the triand elastic neft49]. We will discuss this topic later in detail.
angle inequality generally does not hpld One special property of the convolution model is the exis-
tence of two different explicit length scales: the width of the
receptive fieldoy in the input space and the width of the
d%(v,wr)::J ha(dp(r,r"))(v—w/)2dr’. (2.2 neighborhood in the neural area,. We want to stress here
N that the basic principles of pattern formation in our model
) i , , . are independent of a special choicedgf, hz, andh,,.
Hereh, is the neighborhood function artt\(r,r") the dis- To examine the pattern formation behavior of the model it
tance measure in the neuronal area, which usually is the Eg very helpful to have a potential or Lyapunov function
clidian distance. It can be seen as a collective optlmlzatlorE(W)_ That is, a function which decreases monotonically in
measure, which considers the RF of the whole group of neugme if vy, (1) is a solution of Eq(2.1). A sufficient condition
rons thap would respond to the stlm,ulus. To obtain the Eusg g, =— JE/ow,. The advantage of potential systems are
clidian distance we choodg, = &(r—r’). twofold [55]. First, only fixed-point attractors can occur.

_ To enforce the activity response of the neurons WhOS%econd, if there are many fixed points we can compare them
distance measures are small we use a monotonic decrea&gg their value ofE. This gives us a criterion which fixed

1 H 1 2 . 1
response-function™” ofd%(v,w;): the Gaussian point the system may select dynamically. Our model is in
general nonpotential. It only has a potential if the distance
h(dz(V, W) exp(— d% (v, w,)/20%). (2.3 measurag(v,w,) includes the same neighborhood function

as the cooperation term in the convolution, ilg,=h,, (see
To introduce competition we normalize the response funcRef.[56]).

tion by the response of the whole neural area. With hi andh,, as Gaussians, we get the potential
hz(dz(v,w,)) d3(v,w,
gr(dr(v,w,)):= R : (2.9 E(w):= —a?zln f exp — R(—Zr) dr (2.8
| Pe@rvamyar v 20%
N

with the distance measure after £g.2).
Note that the parametewr controls the competition

strength: settingry to infinity results in a constant relative I1l. MODELING OCULAR DOMINANCE PATTERN

response functiolgyy for all neurons which means no com- EORMATION

petition. If or=0, we obtain with probability 1g,= (r o )
—r,), with r, the neuron whose RW, is next to the stimu- To understand the formal principles and mechanisms

lus v. Here we have “hard competition,” where the activity Which underly the development and activity-dependent stripe
is localized only around the “winning” neuron, which is width of the ocular dominance pattern in the primary visual
called the “winner takes alllWTA) case. The competition COrtex, we consider two input surfacesaandR, representing

term g can be interpreted as relative receptive field effectthe retinae or lateral geniculate nuc(_E'GN) and one neural
sinceh,, can be seen as an ansatz for a receptive field of 81€etV representing the primary visual area in the cortex

width o, . Another interpretation is Bayesiagy, denotes L27] (see Fig. 2 Every neurorr € V gets input activityA

— L R :

the probability that the respective neuron is the best opti= (A~ (X:.¥),A7(X,y)), (x,y)L,R from the left and right
mized to the given stimulug}7,54. eye, re§pect|yely. The neurons react to this input according

In the neural area the activation spreads into the neighbof© t{‘e'r dlsénbutlon of ~connectivity ~weights W,
hood of the neurom due to local neuronal interactions, de- ?(Wr(X,y),Wr_(X,y)), which Qetermmes thelr receptive
scribed by a kerndh{d(r,r')), whered,(r,r’) is the dis- field. We consider ocular dominance formation as a special
tance measure in the neural area apds the neighborhood case oflEgs.(2.1),(2.7)];
function. As an important example consider the Euclidian

distance measure d
EWrZ«A_Wr)er(A»- Q3.1
di(r,r)=(r—r")? (2.5
If the receptive fields are described byr we are interested
and a Gaussian neighborhood function in) only a few features, it is useful to consider the problem in
terms of a feature map. In the case where the features are
hN(d,\/(r,r’))ocexp(—djz\/(r,r’)/Zajzv). (2.6) linear functionals of the stimul{e.g., gravity centers of the

stimuli distribution) the general form of Eq(2.4) holds for
Combining this, we get an ansatz for the excitation in thethe fe_:atures as weI(For non_llnear features such as the ori-
neural area entation selectivity the relation to the corresponding full ac-
tivity distribution is not obvioug.For the ocular dominance
map, we represent the distributed activith by v
: L R L
e (V)= dr(V,W," )hpdd(r,r")dr’. (2. =(vy,vy,v7) With v,=[ (A~ +AT)xdxdy, vy=[HA
V) ngR( ROWO)IAMEFD) @9 + ARyydxdy, andv,= [ {A-— AR)dxdy while the synaptic
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(a) cortex N (b) cortex JV

FIG. 2. Left: high-dimensional model. Distributed stimélito the two retinas provide input to neurorvia weight vectorsi.
Right: inputs and weights are represented by their corresponding centers of gravity and the averaged interocular differences as points in a
reduced representatigtfeature space’) where the large extensions denote the location of the stimulus while the height represents ocularity.

weights W are reduced to the receptive field centevs IV. TWO SCENARIOS OF OCULAR DOMINANCE
:(WX!Wy!WZ) with WXZfX(WL‘l'WR)XdXdy, Wy PATTERN FORMATION

= AW"+WR)ydxdy, and w,= [ (W-—WR)dxdy. In

this representation the average weight dynamics @d) . Patte_rn formati.on in our mo.del occurs as a result of a
reads dimensional conflict. The two-dimensional neural surface is

forced to represent an essentially three-dimensional input
space: the two dimensions are attributed to space and the
third to ocularity. The neural map ignores the third dimen-
sion if the variance of the related feature is small compared
to the effective receptive field size which dependsmgpand

oy . Beyond a critical value o0& and o, the map folds in

. L _ . ) ) and patterns such as stripes and patches emerge.

wherep is the projection of the high-dimensional stimulus We investigated the formation of “ocular dominance pat-
distribution P into the reduced representatiofifeature  yomng" in our model in many simulations. We started from a
space’) M (Fig. 2). The activatiore, in general might de- pinocular[i.e. w,(r)=0] and roughly retinotopic map which
pend on more than the centers of gravity and the interocula a fixed point of Eq(3.2) (see next section It turns out
differences of the stimuli. Here, however, we use the featurghat it is important to distinguish between two different sce-
vectors instead of the activity distribution and RF as a firstarios of pattern formatiotrcompare with Ref[57)).

J _ ~
W= fMp(V)(V—Wr) er(v) dv, 3.2

approximation in the framework of the convolution model. Figure 3 shows the result of a typical simulation. In the
Note that the dimension reduction not necessarily in- »

volves an approximation but instead shifts the attention from 14E J— 3

the high-dimensional problem to the dynamics of centers of 12:_ : ' E

gravity and interocular differences, respectively. A structure : 05 | ; : ]

which appears in this representation therefore also should . ! _ 1

emerge in the full problem. What then remains is to derive § i
the stimulus distribution in the feature space from the distri- 6F
bution of all inputsP. 4F ; - - ]

Intereye correlations are reflected by the variancep of 288, : g
along the ocularity coordinate of the feature space. To see 0 L L - - 1
this we consider correlated inputs constructed as in [R&F: 0 10 5x10° 107 2x10 5x10
Locally random stimuli are smoothed with a Gaussian kernel ¢

of width o providing surfaces&",AR) which then are mu- FIG. 3. Mode selection in a simulation of 332 neurongopen

tually correlated with strengthx, i.e. A"=KZ\R+(1 boundary conditionsgz=0 method from Ref[33] with learning
—K)Z\L AR— K;E\L-i‘(l—K):‘\R (Fig. 2. A simple calcula- rate 0.1. The inputs are samples from a normal distribution with

; 2\ _ 2 2 _ P
L . L . . variance =(1-2 /6 at k=0.3. was decreased lin-
tion involving the central limit theorem shows that in this (vz)~! ) osm " N

. o X X early from 1.35 to 0.5neural unit$ during t=5x10° iterations.
casep is a normal distribution along, with a variance The grey levels show the evolution of the normalized power spectra

(v3)=(1-2x)?c%m/6. We also derived the stimulus distri- of the 0D patternginsed. Wheno y crosses its critical valu@ash-
bution in the feature space from other assumpti@ueh as,  dotted ling the pattern forms and retains its wavelength although
e.g., rare localized stimyliwith the general result that the the maximum of the spectrum of the linearized dynamics moves
variance is alwaygv2)oc(1—2«)2. further to higher valueghick line). Note the logarithmic time scale.
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FIG. 4. Evolution of ocular dominance of the same model asscenario where the width parameters shrinks during development.

above.o, was constant at 1.Eneural units during t=5x 10 it- They are determined by the wave number of the first positive ei-
—3.6 boosts the noise genvalue(broken ling. The stars describe the wave number of the

erations andc=0.0. The eigenvalue of .= . . =
to a great extent. First the modes with the greatest eigenviep stationary solution of the pattern after the reorganization in the sec-

were amplified. Then the pattern reorganizes and the frequenc§d Scenario. They are just above the left edge of the positive
shifts towards the edge of the positive spectrioroken ling. Spectrumline).

simulations we use a stochastic, Markovian adaptation ] ]
method as in Ref:33] to get a robust result. As described in Petween the correlation and the length scale of the stationary
Ref. [37], the fluctuations are strongest near the largest ei"ap. However, the evolution of the pattern formation pro-
genvalue of the linearized dynamicsee next sectionwhen  cess differs in time scale and amplitude. In the next sections,
the parameters, o, ando, are below the critical value, W€ investigate the formal principles of the pattern formation
the noise pattern becomes amplified: it grows exponentiaff€chanisms in both scenarios. We will focus specifically on
The critical values depend on the correlation parameter the determination of the length scale of the emerging pattern.

and the wavelength of the amplified pattern depends on the

criti.cal values of the width parameters. Further shrinking \, pATTERN FORMATION IN FEATURE MAP MODELS

during development leads two changeof the wavelength,

the pattern becomes sharper and more stripe-shaped only. Generally, pattern formation occurs if the homogeneous

The stripe width resulting from this scenario are larger forbinocular map is unstable against small fluctuations. In the

smaller correlationgsee Fig. 5. We shall discuss this in the following sections we will analyze ocular-dominance pattern

next section. formation in the most simple case of a two-dimensional input
In the other scenario the width parameters are fixed aspace and a one-dimensional chain of neurons. In a first ap-

subcritical values. Thus the pattern grows right from the beproximation this can be seen as a vertical cut through the

ginning. In the first part of the evolution the wavelength of feature space along the ocular dominance direction, parallel

the pattern is at the largest eigenvalue of the linearized dyto one side, say, thedirection. The validity of the results in

namics as in the first scenario. But then reorganization octhe case of higher-dimensional feature maps or the fully con-

curs due to the nonlinearity of the dynamics. The stripenected problem with two input sheets projecting onto one

width of the pattern shifts on a logarithmic time scale toneural area will be discussed in the last section.

longer wavelengthgsee Fig. 4. The stationary length scale In the two-dimensional feature space with one space co-

of the pattern depends on both the width parameters and therdinatex and the ocular dominance coordinatewe per-

correlation parameter. Here, the stripe width are larger foform a linear stability analysis. This allows us to determine

smaller correlation todsee Fig. 5. We shall discuss this in  which modes are stable and which become amplified.

Sec. VIl The evolution of the weighte/= (w, ,wy) in our reduced
Both scenarios qualitatively predict the same dependencgroblem is given as

w© o o0 h ,

iwr=f f P(v)f RV ) haddadr,r)dr’ (v—w, ) dv,do, .

at — 00 — 0 — o0 *®
fﬁ hr(dz(v,w,/))dr’

©

We choose for the calculatios/d,(r,r')) after Eq.(2.6) = The caseo = o, represents the potential version and the
andhz(dz(v,w,)) after Eq.(2.3 with caseo,= 0 stands for the continuous formulation of the stan-
dard nonpotential Kohonen mode3].

The homogeneous solution of the mamis=(r,0). This
1 (r—r’)? is a stationary solution of the map for all parameters
ha(da(r,r’))= exp — 5 or, 0q, andoy if P(v) is constant in thex direction and
\/E‘Tn 207, the mean vanishes in thedirection because the integration
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FIG. 6. The spectra in the stabtedirection for several param- FIG. 7. Some spectra in the unstalylairection for different
eters gy=o0,, 0=20,). parameters sets which fulfill the marginal stability condition,f,
=0).

runs over an odd functioffor the x direction around and
for they direction around D . . . .

We examine the stability of this stationary solution by invariant operator |s_d|agonal. Therefore thg computation of
linearizing the evolution of a small perturbatiéh. With the  the spectrum is straight forwargee Appendix A The lin-
ansatzwr=v7r+ & we get for the evolution in the neighbor- earized dynamics is given through a simple eigenvalue equa-

hood of the stationary solution tion
S~L8 1= La=NK) &
r

with the linear operatoL. In Fourier space this translation with the spectra of eigenvalues

2 2 2 2 2 2 2, 2 2
o ortoi)(ohto ke(oi~+ o)
(k)= — 1+ 1+k2 Nf“—kz( & Ni R ”)exp(—kzaz))exp(—%, (5.1
or or
[1-exp —k%02)] k¥(ai+ od)
Ay(K)=—1+(v2) — exp — 5. (5.2

R

If an eigenvalueA (k) is positive, then perturbations with A mode with this wave number is marginal stable at
wave numbek grow exponentially, while perturbations with
wave numbersk’ with negative eigenvaluea (k') are
damped away. Its easy to see that in xhdirection (Fig. 6)
all modes except the marginally stable translation are . . 5
damped. This direction is stable. 2 oxyton TNt O, 207

In they direction the behavior depends on the width of the <Uy>:( 5> TOw exp{ g2 In( 1+ o2 +02)
input distribution(:;i): above a critical value the spectrum ® AT
includes positive eigenvalues around the maxinm(ig. 7). 5.4
The spectra have a maximum at

2

1+ IR ) (5.3  Combining these two formulas, we get the position of the

2 2 . . .
TNt Oon first positive eigenvalue

k ! I
= — n
max O-R
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Applying this result to the model of ocular dominance pat-minima at the continuous branch is small. Little noise pushes
tern formation of Sec. Ill, we have to take into considerationthe amplitude to the branch with hysteresi®@mpare with

that the parameters,,, oz, andog are not known. Hence, the results in Ref[58]).

we are only able to compare the resulting wave numbers of

the pattern fqr the normall and the strabismic case. AssSuMIiNgy|; REORGANIZATION PHENOMENA OF PATTERNS

that the relation of the width parameters remain unchanged

by introducing strabism, we normalize the wave numkgr Undercritical width parameters usually lead to a whole
by the wave numbekg of the strabismic casex(=0). We  range of unstable modes. For each of these modes a positive

get for thex dependency of the wave number of the resulting2mplitude is more optimal than the homogeneous map. This

ocular dominance pattern corresponds in the potential case to a Lyapunov function
which has a minimum at a positive amplitude at each of this
K 1 modes. The wave number of deepest minimum at all this

*

(5.6 modes can be seen as the wave number of the stationary
solution of the model.
The numerical simulations show that the map reorganizes
A pattern with this wave number is selected in the scenariafter a first saturation of the amplitude at the wave number

E:l—ZK.

of shrinking receptive fieldscompare Fig. b which corresponds to the largest eigenvalue of the linearized
dynamics. This process is bounded by the positive part of the

VI. PHASE TRANSITIONS AT THE PATTERN spectrum of eigenvalugsee Sec. Y. In the following, we
FORMATION derive an upper bound for the wave number of the stationary

solution. We assume that the higher harmonics of the station-
Shrinking the width parameters below the critical Values,ary map make on|y a small contribution to the energy and
lead to patterns with finite amplitud€'ocularity” ) via a  that the “refinements” to a simple harmonic map have more
phase transition of second order. The stationary amplitude ghfluence at lower wave numbers. This holds in all cases we
the model near marginal stability can be derived by expandgnow (see, e.g., Figs. 10,11
ing the evolution equatiofEgs. (2.1),(2.7)]. For small am- In the case of undercritical width parameters, which are
plitudes, only the mode of the critical wave numigrinthe  not too far from the critical values, it is possible to expand
unstable direction and the mode with the Strongest COUpling‘]e energy respective the amp"tude and the wave number
from the stable direction have to be considered. USing th%nd then evaluate the zeros of the equation system_ This
symmetry of the equation we have the ansatz for the approxtilassical techniqugs5] is not very useful here because the

mation of the solution resulting terms are very long and give only a little insight.
w,:=[r+a, sin(2k,r),a, cogk,r)]. 0.8 . . . . .
The evolution equation is invariant against translations. This |
leads to the relative simple form of expansion around 0.6 i
(ax aay) =(0,0)
A
. 2 Np:a I
a~Nyaxtc,ay, V04 i
. N I
A~ 3
ay,~\ya,+caa,+day. o [ 1
Using the spectrum, as control parameter we have for the 0.2 I ]
stationary amplitude of the mode
- ool . .Y
X
a,= \/———— .. 0.0 0.2 0.4 0.6 0.8 1.0
Y~ Nee,—nd, 'Y 05/ <vZ>

The model shows a continuous phase transition at all param- G, g. The set of bifurcation points of the convolution model

eters(see Appendix B and Figs. §,9 (oy=0,). The line denotes the parameters, where the homoge-

Near the WTA casedr=0) a second branch appears. neous solution is marginally stabla(k, )=0]. Inside the line of
Interestingly this behavior takes place even at positive marginal stability, the homogeneous solution is unstable and pattern
This stationary amplitude could refer to higher-order termsormations occurs. The arrows denote different paths for the devel-
of the expansion. The simulations show that the localbpment of patterngsee Fig. 9.
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FIG. 9. Bifurcation diagrams of the convolution model at different parametgrécompare with arrows at Fig.)8All paths show a
continuous phase transition behavior. The solid lines show the ampﬁt}m derived from the expansion of the evolution equations
in Appendix B. Near the hard competition limie-=0) a new branch with hysteresis appears. This behavior could result from higher order
terms of the expansion.

Far away from the critical point the expansion breaks down. In this case it is possible to evaluate an estimation in the
following way.
In the first step we evaluate the modified distance measure by using the harmonicvarsétzA sinkr)):

o _r\2
d?(v,w,)= ! f exp(—u>(v—wr,)2dr’

N2T o 20'/2\/
k203 AZ A
=r?=2rv,+vitvi—2v,A exp( - N) sin(kr)+ g+ > exp( — 2k?a4)cog 2kr).
|
For a better approximation we translate the distance function P:=1+A%k% exp(— 2k20/2\/),
to achieve nearly a saddle point approximation and replace
the trigonometric function with the approximation up to sec- K22
ond order Q:=2v,A%K? exp(— 2k?03) — 2v,Ak exp{ - N) ,
k2r2
sin(kr)~Kkr, cos{kr)wl—T. 5

A
o Ri=oi+ o [1—exp —2k%o3) |+ vy +viA%K?
We get as approximation for smdtlo 07, and largeA

(far away from linear instabilityfor the distance measure k202,
, ) Xexq—Zkzojz\/)—Zvyvakex% - )
d*(V,W, 4, )~Pr’+Qr+R 2
with With this approximation we have for the energy

r

= Pr’+Qr+R
— 20%

AN
R-——=)+toxInl —
< 4P K 2770'722

2 /\2 2 2
ot 7[1—9 (oa,K)]+0o%In

|

1+ A%k%g%(0 k)

2
2mon

2

. (VI1+ AR G20y, K) — 9o p K) T+ APg% (0, K) /3
1+ A%k%g%(0 k)
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FIG. 11. The wave number of the stationary solutitmnoken

line) and of the upper bound from the position of the energy mini-
K /211 mum of the harmonic ansatapper solid ling. The lower solid line
marks the position of the left bound of the positive spectrum. Pa-

FIG. 10. Spectrum of eigenvalué®p) and energy of stationary ameters arez=0,=0.

solutions(broken ling compared to our harmonic anssolid line)
in the case of a Gaussian distributi®{(v,). The optimal wave VIIl. RELATION TO OTHER FEATURE MAP MODELS

number of the stationary solutida) is bounded by the minimum of
our ansatab) and is below the positiok, of maximal eigenvalue
Ay(ky) (©).

Our convolution model is strongly related to the well
known Kohonen algorithmi33,37] and to the elastic net al-
gorithm [49]. The first one can be seen as a discrete, algo-
. . ] rithmic approach of our model using,= é and a vanishing
with g(o k) :==exp(~03k?). To determine, at which wave input field width (“winner takes all” limit). Correspond-
numberk of the harmonic ansatz the energy has a minimumingly, the spectra of the linearized dynamics are the same as
we have to look for the zeros of the partial derivatives in Ref.[37], if we choose the Euclidian metrier{,=0) and

thenor—0:

J d
ﬁE(A,k)=0, ﬁE(A,k)=O.
keo

2 2
M(K)= — 1+ (1—K202) exp( - zN)’

Inserting the zero of the first equation into the second one,
leads to a condition for the minima of the approximated en-
ergy

k2g2
Ay ()= — 1+ (v2)k? exp( - N)

0=[0% exp(—203k?)]k+[1—exp —204/k?)]
2 21,2 21,2
~| glexp(— 4oy k%) —exp(— 2073 k)] because we have

6
+ okk? exp(—403k?) +§<v§) 1—exp(—k202)
im ————=

2
_ K2,
or—0 O'R

1/2
X [exp(— o3/k?) —exp —303k?)]

Here, we can see, why Kohonen's algorithm is so successful
For small parameter o this equation holds near (additional to the simple and algorithmically cheap form
because no eigenvalue is smaller that; numerically the
algorithm is very robust.
K 1 If additionally to og=0 we useh,=h,,, we get the po-
\/3(<U)2/>_U722_0j2\/) tential version of the Kohonen’s SOFM. In this case the
model has an energy function which we obtain from the
general energy function Eq2.8) with or—0

which shows a nearli(x 1/\/<vy2> dependency also far away
from linear instability. Hence, the dependency of the wave

number normalized with the wave number of the strabismic E:= EJ' (=) (V—w, )2dr

case is similar to the dependency which holds for the wave 2)n * ' ’

number of the first positive eigenvalue in the shrinking re-

ceptive field case. where the neurom, is the winner neuron in terms of the
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distance measure which guarantees the neighborhood preservation. Unfortu-

de(v,w, )<dg(v,w;) VreA. ngtely, the.discr.etization ?nduces an implicit length scale

* without obvious interpretation of the second term. The elas-

The elastic net algorithm consists of two parts: a Hebbiariic net behaves similar to the convolution model with a small
soft competition term and smoothing elastic force term,but finite neighborhood widtlar

J
awr:<ngR(d%(Ver’))hj\/‘(djz\/(r:r,))((V_Wr’)+(wr’_Wr))drl>

=<fNQR(d%(V,Ww))thMH’))(V—Wrr)dr’>+<fNQR(d%(V,Ww))hA/(djz\Ar,r'))(Wrr—Wr)dr' :

The first term reduces to the Hebb term of the elastic netpansion around =0 we can estimate the elastic force fac-

The second term behaves similar to the elastic force term, for g8 with an small but finite neighborhood in the neural

the neighborhoodr , is small and the width of the receptive area:

fields o is wide in relation to the width of the distribution

of the stimuli gi, )

B= _2<Uy>'

d 5 207

Ewr%<gR(dR(V1Wr))(V_Wr)>+BAWr . . .
For higher frequencies, however, the spectrum of the elastic

net differs from that of the convolution model. The Laplace

gperator damps the modes in this range much more than the

neighborhood function. This damping behavior leads to nu-

merical instabilities, which have to be considered in simula-

A comparison of the dynamics linearized around the ho_tions. The energy function of the pOtemial elastic net model

gan be obtained from the energy function of the potential

mogeneous solution makes the relation clearer. We obtai avolution model b ing th rameters above and add
the spectrum of eigenvalues from the spectrum of the conconvolution model by using the parameters above and add-

volution model[Egs.(5.1),(5.2)] by inserting the parameters Ing an elastic energy term
on,=0,=0 and by adding the Fourier transformed linear

with a small factorB. The right side is the continuous for-
mulation of the elastic net, since the elastic force term can b
seen as a discretization of the Laplace-operakyn(w,,
—w,)~Aw, with r" € neighborhood of.

Laplace-operator A f (Vw,)2dr.
2)n
AS— — BK25, .
BAG— = B0 The expansion of this term around the homogeneous map as
This yields in the previous section results in:
— _ 2 2.2\ _ 2 0 A2k2
Ax(K) = — k2o expl — k202) — k2, 8.1 gf (Vwr)zdrzg 142 )

_ _k2 2
xy(k)=—1+<y2>[1 eXp(z 7l

2 . . . .
Bk=. (82  an analysis of this energy function along the lines of the
orR . . .
previous sections shows, that the elastic net has a phase tran-
The spectrum in thg direction is maximal at sition of second order for alr; and we can expect a similar
reorganization behavior as for the convolution madé].

1 (vi)
k* =— Inf — IX. DISCUSSION

P In recent years a wide range of models with different
which depends on the varian(:ef,) and becomes marginally mathematical properties and different degree of abstraction
stable at has been used to describe the development of ocular domi-

nance patterns. On one side there are noncompetitive, mainly

(v linear models[60—-67 with local learning rules which are

7 : based only on the correlation between input cells and post

synaptic cells. In these models the changes are governed in a
Comparing this to the spectrum of the convolution model inlinear way by the input patterns. On the other side there are
the unstable direction we get an approximation of the spec-the competitive, essentially nonlinear modfd®,27,37 in
trum of the elastic net around the maximum with a small butwhich the learning rules are nonlinear and slightly nonlocal.
finite width o, of the neighborhood function. From the ex- In some comparisons between linear and nonlinear ap-

(vi)=0%+ B/ 1+In
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proaches it had been stressed that the competitive modet®es not change any further. In the other case of constant
seem to fit better to the physiological findinfs7,63,14. subcritical parameters, the pattern grows with a high spatial
Hence, we restrict our investigation of principles of patternfrequency right from the beginning and then reorganizes on a
formation to the latter class of models. long time scale. This yields a map with a wider stripe width.
In this contribution we analyzed activity-dependent for- Which scenario is actually realized in the brain can be
mation of neural connectivity patterns in the framework ofresolved by the experiment sketched below that is feasible
the convolution model. The convolution model is derivedwith present day technology. Starting at about two to three
from basic assumptions about activity-dependent neural maweeks of age, ocular dominance columns can be visualized
formation making it neurobiologically plausible. At the samein the visual cortex of kittens by optical imaging of intrinsic
time it generalizes a range of previous approaches. In pasignals[67,68. It is known from monocular deprivation
ticular, the widely used Kohonen moded3,37,64 is con-  studies that the OD pattern is in a plastic state until the end
tained as a limiting case and the elastic net algorithnof the third month of life, with the degree of plasticity beef-
[49,45,69 can be approximated for the case of a weak elastitng maximal at an age of six weeks. Practically it appears
force. We applied our approach to the problem of oculampossible to visualize the pattern every two or three days. It
dominance pattern formation in visual cortex for which we should therefore be possible to obtain a sequence of patterns
performed simulations and a mathematical analysis of théollowing its development from the third week to adulthood.
basic mechanisms of pattern formation including the bifur-Comparing such sequences in squinting animals and animals
cation behavior and reorganization phenomena. In particulawvith normal visual experience should suffice to identify by
we were interested in the origin of characteristic lengthwhich scenario a larger wavelength of ocular dominance col-
scales of the resulting patterns and on how these scales demns is realized in the brain of squinting animals.
pend on interocular correlations of the inputs to the two eyes In our formal analysis we considered the evolution of fea-
during development. ture maps in terms of a deterministic dynamical system. We
We found that the experimental observation of increasingieglected the influence of noise in the formulation of the
scales for lower correlatiof26] is reproduced in the convo- model in order to guide the attention to the basic structure of
lution model[37,66,27 following essentially one of two dy- the dynamics. However, knowing the properties of the deter-
namic scenarios of pattern formation. ministic system means knowing a lot about the related sto-
(1) In the first scenario the homogeneous solution is stablehastic system. The linear approximation of the evolution
in the beginning, i.e., all neurons are binocular. In order toequation corresponds to the drift term of the Fokker-Planck
obtain patterns the intrinsic width parametéesfective re- equation which determines the stability behavior. On the
ceptive field sizg must shrink during the formation process other hand, the energy function of the deterministic system
such that the map is driven through the instability. In thisdetermines the stationary invariant distribution of the maps
case the mode with the wave number of the eigenvalue fird®(w):P(w)xexd —2E(w)/a?], where o is the strength of
becoming positive grows exponential. The pattern saturatethe additive noise.
at an amplitude which can be determined by the higher order The type of transition from the homogeneously binocular
coefficients of the expansion of the energy function as showstate to the ocular dominance pattern exhibits distinct signa-
in Sec. VI. Further shrinking the receptive fields leads to aures of the nonlinear contributions to the developmental dy-
deeper energy minimum and the pattern may become fixechamics. Our results demonstrate that the type of bifurcation
(2) In the second scenario the parameters lead to patterisupercritical vs subcriticaldepends on the qualitative na-
formation right from the beginning. In this case a patternture of intracortical interactions. Assuming that the develop-
corresponding to the largest positive eigenvalues grows firshent of ocular dominance columns is not coupled to the
until it reaches saturation. The pattern does not remaimetinotopic organization, the transition is supercriticais-
stable, it reorganizes on a long time scale which goes alongontinuous if the range o, over which activity spreads
with a lowering of the wave number of the pattern. The shiftwithin the cortical layer is much larger than the receptive
to lower wave numbers stops before it reaches the leffield sizeo (see coefficient, in Appendix B. The bifur-
boundary of the positive spectrum of eigenvalues. cation is continuous if the size of receptive fields is a con-
Both scenarios correctly describe the effect of wider stripesiderable fraction of the intracortical rangs,. If the devel-
width of ocular dominance patterns in strabismic od&tg.  opment of the columnar pattern is coupled to retinotopic
5). The absolute wave length of the pattern is, however, notlistortions the transition becomes continuous for the com-
determined, because it depends on experimentally unknowplete range of parameters for which patterns can form. The
physiologically values of length scales;, o, ando,. latter result agrees with the findings of Herman and [38}
Based on the assumption, that at induced strabism the widtivho studied the phase transition, which occurs in the discrete
parameters remain unchanged and correlation is zero, we olersion of the Kohonen model. Such detailed properties of
tain a relative wavelength as a function of the correlationthe patterns forming transition might become experimentally
parameter for the normal case. Figure 5 shows that the scaecessible in the future. Our results suggest that in this case
narios of OD pattern formation cannot be distinguished oroverall properties of the pattern forming transition could be
the basis of the stationary solutions alone. If, however, theised for testing the qualitative nature of neuronal interac-
dynamicsof the pattern formation is observed, both scenariogions in the cortical area.
make very different prediction&ompare Figs. 3 and)4In The formal analysis were made in the most simple case of
case of shrinking receptive field sizes and/or shrinkinga one-dimensional neural area and a two-dimensional input
neighborhood widths, at some point the pattern grows vergpace. The extension to the higher-dimensional case is simi-
fast with the first unstable wavelength which from then onlar to the “classical” pattern formation systems in physics
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stage of the evolution of the map, the different dimensions
are independent from each other. Hence, the phase transition
occurs for each dimension individually. At the nonlinear
. . . . hr(dz(V,W,))

stage of pattern formation the dimensions are no longer in- -
d_ependent. _Similar to systems described by amplituple equa- J hp(dr(V, W, ))dr’
tions of Ginzurg-Landau-type the map reorganizes to o
smoother patterns such as parallel strigg3. This reorga-
nization process has only a little influence on the wave num- X(v=w;)do,dvy .
ber of the resulting pattern.

Generally, it is very difficult to find a stationary solution
for high-dimensional fully connected maps. This prohibits a 1 ;{ dp(V,w, ))

LA §

such as the Swift-Hohenberg equatidi®]. At the linear 9 o (o o
&tWr:f f P(V)f

hAd(r,r’"))dr’

We choose for the calculations

similar analysis of the stability behavior as in the low- he(dr(v,w,))= 5
dimensional feature map models. Another way of investigat- TOR
ing the pattern formation in a high-dimensional map was .
proposed by Baueat al.[70]. They analyzed a heuristic cost with
function depending on an ansatz for the stationary map. They . (r=r')2

p( )(v—wr,)zdr’

2
20%

demonstrated the validity of their computations by compar- dr(V,W,) = f
ing to numerical simulations. However, the starting point of \/ﬁan —w
their derivation of the distortion measure which was adopted
from Ref.[71] is not valid even in the case of an ordered and
map in the low-dimensional feature map césee Appendix )
C). A more general investigation will have to use a cost hpddadr,r'))= 1 exnl — dur.r’)
function, for which the validity was formally proofed. ' V2moy '

After all, perhaps the most striking feature of the self-
organized neural feature map model is the analogy with the with du(r,r'):=(r—r")>2
classical pattern generating systems of physics which are de-
scribed by equations of the Ginzburg-Landau type. We susWe take the ansatz
pect, that more detailed investigations of instabilities in the
nonlinear regime would reveal behaviors such as zig-zag in-
stabilities, competition between different modes and espeyye get
cially will stress the relevance of the boundaries of the neural
area for the hole layout of the patter9]. d

(9 0 0
Ewrzﬁﬁr: fﬁwjixp(v)fl(woﬁ' o) fa(wo, + 6)

2

207,

20'j2\/

W, =Wo, + 8 =[r+ 5X(I’),5y(l’):|.

APPENDIX A: COMPUTATION OF THE SPECTRA
OF THE CONVOLUTION MODEL X fa3(wor +6),

The evolution of the weights is in our reduced problemwhere we expand the four functions around the stationary
given as solutionwg, up to terms of first order:

o

fo(wor + (S,)::J th(dR(v,WOr,+ o))hdy(r,r"))dr’

- f (v Dhy(dy(r,r DA’

J‘fch,x - /(r, r”)/ ﬁ]( ) ( ( )) ./\/( ))
V—Wyr) & ndr”"hs,(d V,Wq, h(d I’,r’ dr,,
. 2 ] 2 or r R\MR or /\/(

oo 71
fa(wor + 67) ==( f_th(dR(VvWOr’ + d))dr’)

0 « exd — I"—I‘")/ZO’2
1+f f L n](V—WOr")lsr"dr"hR(dR(V'WOF’))dr’ '

2
2TOL0R

_ 1 ex%vi-ﬂrﬁ
V2mog 205
Ux— = 6(r)

fs(W0r+5r)’:( vy— 8y(r) )
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Neglecting terms with higher order than one and using the fact of vanishing meanyrditextion, we get

ﬁ ry=—éar +—1 r)——UN r
ﬁt& )=—4r) 27TO'NO'% T/ mﬁo()

with
— - “ * eXn:_(r,_r”)Z/zo-ﬁ] n n (vx_r,)z (r_r,)z n !
‘/’x(r)_lelejim(vx_r) o (vx=1") (1 )eXp< _W exp — 207, dr"dr’do,,
([ (vy—1)2 \exd —(r'—r")%203] e (ox—1"2|
<px(r)—fiwﬁxﬁw(vx r)exp( 2(0%+Uj2\/) \/Ean (vy—1") 85(r")ex 7723 dr’dr’dv,

and in they direction

© [ exd — (r' —r")?2¢2] T2 r—
zpy(r):(vﬁ)j_xf_mj i oo 7 Sy(r" )exp(—(vz—z)) exp( ( 20’N) )dr”dr doy,

OR

([ (e n? \exd = (' =r")?207] L)
goy(r)—(vy>f_wf_mf_mex;{ 202t o2 NS oy(r")ex —20% dr”dr'doy.

If we consider the dynamics related to the wave numBekthe perturbation, the convolutions ifr) and ¢(r) translates
to simple products. We get

“ n 1
Eﬁ(k)——ﬁ(ka(lﬁ( K)— W#’( K)

with
I(k) = 3x(k>2m;w( 1+ kzijﬁ) exp( - w ,
OR
ex(K)=3(K12mop ok + ol ( ok + o) (R + oK exp< — gﬁmﬁz)) ,
and
DK = 3,(K)(v2) 270y exp( _ w |

k?( O'N+ o5 2 ZO'R)

@y(k) 5y(k)<vy>27T0'R\/0'R+ O'N- ex;{

The linearized evolution in the fourier space of a small perturbation is given by an eigenvalue equation
0 N
A=\ &K)

with the spectra of eigenvalues

2 2 2 2 2 2 )
o ortoi)(ohto K2(a2rt o2

A(K)=—1+] 1+Kk2 Ng“_kz( R Ni R n)exp(—kzaé) exp( (o3+ ))’
or 0% 2

Ny(K)=—1+(v?) 0% >

[1—exp—k?03)] p( e
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APPENDIX B: THE EXPANSION OF THE EVOLUTION EQUATION
We expand the evolution equatifq. (3.2)], with the ansatz
W, :=(r +a, sin(2kr),a, cogkr))
around @,,ay)=(0,0). Using the symmetry of the equation and neglecting the influence of higher modes, we have
a,~\ay+CyaZ, (B
a,~\,a,+cya,a,+dya’. (B2)

With similar computations as in Appendix A we have for the coefficients

1—exp(— 4k%o%,
c=kK| | (di+0%) eXp(Z IR —1)exr[—2k2(¢rﬁ+a/2\/)]—<y2)
oR
1-exp(—2k%0%)[1—exp —k?0%)]>  1—exp —k20%
X((szwaé)[ exp( UR)]E exp(—k*oR)]® exp(2 UR))exq—kz(aﬁJrzcrfv)], 3)
oR oR
1-exp(—4k%0%
cy=2K| | (oi+0%) 5 —1|exd —2k¥(a2+ ai)]1—(y?)
oR
_ _2k2 2 _ _k2 2\72 _ k2 2 2
X((O’%‘FO‘%)[]- et UR)]El ot ox)] 1 eXF(Z UR)ex;(—k—(BO'ﬁ-l—O'JZ\/)) , (B4)
oR oR 2
1 [ 1—exp —4k%o2 1—exp — 2k252)1[ 1 — exp — k202) 12
dyzg[ o 5 UR)exd—2k2(0ﬁ+af\f)]—<y2>[ o UR)]E R o]
OR oRr
2 1— _k2 2\14 2
X exr[—kz(oﬁ+2<ri/)]+exp(—%(50ﬁ+0%)) —<y“>[ eXp(UG )] ex;{—%(?;aﬁ-i—oi[))}. (B5)
R

Inserting the stationary solution of E@1) in the stationary
solution of Eq.(B2), we have

Aok 1.0 [ T LI T ]
X2y (B6) 5 E
0.5}

2
ay_cxcy—)\xdy'
The amplitude equation E@B6) shows the bifurcation be-
havior of the model. Normally the spectrum of eigenvalues
Ay is used as control parameter for the bifurcation. The factor —
cxCy— \d, indicates the type of the of the bifurcation. Is this
factor negative, then there is a foreward bifurcatiancon- < o5k
tinuous phase transitionin the other case a backward bifur- [
cation with an discontinuous phase transition and some hys-

0.0}

teresis occurs. The model shows a continuous phase -1.0f
transition at all parameters. In the winner takes all limit
(0x=0) we have _1_5:...._‘””.”_“
cx=k{(405k2—1)exd — 2k3( o2+ o3) ]+ (y2)K? 0.0 0.5 1.0 1.5 2.0
k V<vi>
X exf —k3(o2+203)1}, (B7) Y

FIG. 12. Comparison of the spectra of the linearized evolution
equationgbroken line$ with the spectra of the corresponding qua-
dratic part of the Lyapunov functiofines) related to a perturbation
only in they direction near marginal stability. In all casesdg
=0. The Lyapunov function predicts a different stability behavior
than the dynamical systems actually have.

(402k?—1)exd — 2k2(a2+ a4) ]+ (y?)k?

cy=2k

: (B8)

k2
><exp( - 3(30'5-1- cri/))
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k2 0
dy = exq — 2K2( o2+ o] (B9Y) 5t Wot &)~L(Wo) 8,

1
In the SOFM limito,=0 we get the same results as in Ref. V(wo+ 8)~V(wo) + E‘SQ(WO)‘i

[58]. . . . .
The operatoi describes the linearized evolution of the dy-
namical system an@ is the quadratic term of expansion of
APPENDIX C: COUNTER EXAMPLE TO THE SUPPOSED the lyapunov functiorV. The implications made above have

LYAPUNOV FUNCTION OF THE KOHONEN MODEL to hold for any perturbation. Hence, we can restrict us to the
case of a perturbation only in thedirection. Then the prob-

We investigate the validity of an ansatz for a Lyapunovlem reduces to a simple comparison between the speatyum
function of the convolution model in the case of nonpotenti-of the operatotZ in they direction[Eq. (5.2)] and the nega-
ality hy+#h,: tive spectrum of eigenvalues @,,= o'%yV(wo). We con-

sider the stability behavior around the stationary solution
wy=(r,0), which is a ordered, smooth map. This allows for
V__}f (V)f (v—w.)%.(v)drdv an examination of the results in R¢71].
2 Mp N rnor : In Fourier space the operat@l,, is diagonal, as a result
of the translation invariance. We have

— 21,2 k2,2
A simple method to test that is a Lyapunov function, is to o) (k)=£ 1_<vz\1 (2+ ozk%)exp — ko
- - . _ vy 2 y/ 2
compare the local stability conditions of the dynamical sys oR
tem and the Lyapunov function
'{ (sz\/-i- O'ﬁ)kz)
Xexp —————
2
!
L<0<0>0 Figure 12 shows, that is in generahota lyapunov function

of the neural map model of Eg&.1),(2.7). The spectrum of
the linearized system predicts another stability behavior than
with the quadratic term of the lyapunov function.
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